

ANEXO III

1. Comunidades bentónicas

1.1 Metodología

En la **Tabla 1** se muestran las posiciones de las estaciones de muestreo y las principales características que las definen.

Tabla 1. Coordenadas geográficas de las estaciones muestreadas. Se tomaron muestras para el análisis de comunidades bentónicas en las estaciones A, C y REF.

	Coordenad	as (WGS84)	Características				
	Latitud N	Longitud W	Sonda (m)	Tipo de Fondo			
A	43° 21,335'	02° 26,888'	51	Arena fina			
${f B}$	43° 21,350'	02° 26,912'	51	Arena fina			
\mathbf{C}	43° 21,305'	02° 26,845'	51	Sedimento mixto			
\mathbf{D}	43° 21,269'	02° 26,789'	51	Arena fina			
\mathbf{REF}	43° 21,410'	02° 26,915'	52	Arena fina			

Se definieron cuatro estaciones de control a lo largo de un transecto que atraviesa las instalaciones, con las estaciones A y B en el interior de la infraestructura, la estación C en el borde (en el sentido de la corriente preferente), la estación D a unos 100 m de distancia en la misma dirección, y la estación de referencia en la arista norte de la instalación.

Se llevaron a cabo dos campañas de recogida de muestras de bentos y sedimentos. La primera de ellas, recién empezado el ciclo de engorde de mejillón, se realizó el día 8 de enero de 2013, entre las 11:03 y las 13:06, hora local. El viento soplaba del sur-sudoeste (200°) a unos 2,8 m·s⁻¹ y había oleaje del nor-noroeste (330°) de altura aproximada de 1,5 m. La segunda, prácticamente al final del ciclo de engorde de mejillón, se realizó el día 15 de octubre de 2013, entre las 14:58 y las 17:25, hora local. El viento soplaba del sur-sureste (170°) a unos 5,6 m·s⁻¹ y había oleaje del nor-noroeste (330°) de altura aproximada de 1,0 m.

En cada una de las estaciones de muestreo, se tomó una réplica para análisis de caracterización del sedimento (análisis granulométricos, concentración de materia orgánica y potencial redox). Además, en las estaciones A, C y de referencia se tomaron tres réplicas más en cada una de ellas para el estudio de las comunidades de macroinvertebrados bentónicos de sustrato blando.

Las muestras de sedimento se tomaron usando una draga de tipo Shipeck, adecuada para el muestreo de sedimento sobre frondos de naturaleza diversa. Las muestras para el análisis de comunidades bentónicas se tomaron bien con la misma draga de tipo Shipeck (de

0,04 m² de superficie de muestreo), bien con una draga de tipo Van Veen (de 0,1 m² de superficie de muestreo). Las dragas de tipo Van Veen son adecuadas para el muestreo de sedimentos blandos, especialmente fangosos o arenosos, poco compactados. El hecho de que el sedimento de la estación C fuera mixto (con cascajo y piedras) obligó a usar la draga Shipeck en dicha estación para la toma de dos de las réplicas en enero de 2013 y para la toma de las tres réplicas en octubre de 2013.

Las muestras obtenidas para el análisis de comunidades bentónicas se filtraron *in situ* a través de un tamiz de 1 mm de luz de malla, suficiente para la retención de casi todas las especies (Viéitez, 1976; Seapy y Kitting, 1978; Andrade y Cancela da Fonseca, 1979; Mora, 1982), con el fin de reducir el volumen de muestra a transportar al laboratorio. A continuación, se fijaron con una disolución al 4%, en agua de mar, de formaldehido estabilizado con metanol químicamente puro y tamponado a pH=7.

La determinación del potencial redox del sedimento se realizó mediante un medidor portátil METROHM 826 pH-mobile (resolución: 0,1 mV; exactitud: 0,2 mV) con electrodo combinado de anillo de platino METROHM 60451100 con electrolito interno de KCl 3M y sistema de referencia Ag/AgCl. La verificación del calibrado se realizó con patrón METROHM 62306020 de +250 mV. Los valores de potencial redox indicados en este informe han sido convertidos a valores de electrodo de hidrógeno (Eh) según las indicaciones de Langmuir (1971).

El análisis granulométrico se realizó siguiendo las recomendaciones de Folk (1974), Gee y Bauder (1986) y Jonasz (1991), por tamizado en seco a través de una batería de siete tamices con una diferencia en el tamaño de luz de malla de 1 Φ entre tamices.

El contenido en materia orgánica se estimó gravimétricamente, determinando la pérdida de peso por calcinación en una alícuota (30 g) de la muestra.

En cuanto al estudio de las comunidades de macroinvertebrados bentónicos, se procedió a la separación e identificación de la macrofauna bentónica, hasta el nivel de especie siempre que se pudo. Los individuos se contaron y se estimó su peso seco tras desecarlos en estufa a 110 °C durante 24 horas.

Con los datos obtenidos se calcularon: la densidad específica y la densidad total (por muestra), en ind m⁻²; la biomasa específica y total (por muestra), en g m⁻²; el índice de diversidad de Shannon (H'), tanto a partir de los datos de densidad (Shannon y Weaver, 1963), en bit ind⁻¹, como de biomasa (Wilhm, 1968), en bit g⁻¹; el índice de equitabilidad de Pielou (J'), también a partir de los datos de densidad y de biomasa; y la diversidad máxima por muestra (H'_{max}), en bit.

Finalmente, se calculó también el coeficiente biótico AMBI (Borja *et al.*, 2000, 2003; Muxika *et al.*, 2005) con ayuda del software AMBI 5.0, alimentado con la lista de especies actualizada a octubre de 2013, ambos disponibles gratuitamente en la web de AZTI-Tecnalia (http://ambi.azti.es), y siguiendo las recomendaciones de Borja y Muxika (2005), Muxika (2007) y Muxika *et al.* (2007).

Para las comparaciones del valor de AMBI entre estaciones, para cada campaña, se llevaron a cabo un ANOVA de una vía; para las comparaciones del valor de AMBI entre

campañas, se llevó a cabo un ANOVA de dos vías. Para estos análisis estadísticos, se usó el paquete PASW® Statistics 17.0 (versión 17.0.2 del 11 de marzo de 2009).

1.2 Resultados

1.2.1 Campaña de invierno de 2013

1.2.1.1 Características generales del sustrato

En la **Tabla 2** se resumen los resultados del análisis granulométrico, agrupados en función del diámetro de partícula en las categorías de gravas ($\emptyset \ge 2$ mm), arenas ($2 > \emptyset \ge 0,063$ mm) y fangos ($\emptyset < 0,063$ mm), y de la estimación de la materia orgánica de los sedimentos obtenidos en los puntos de muestreo para la caracterización de las comunidades bentónicas, así como del potencial redox.

Tabla 2. Resultados del análisis granulométrico de los sedimentos de las estaciones de control y de referencia para el estudio de las comunidades bentónicas de sustrato blando (Gravas, Arenas y Fangos), concentración de materia orgánica en sedimento (MO) y potencial redox (RedOx).

ESTACIÓN	Gravas (%)	Arenas (%)	Fangos (%)	MO (%)	RedOx (mV)
A	10,1	68,6	21,3	1,9	59
В	98,9	0,8	0,2	2,1	182
\mathbf{c}	60,8	30,9	8,3	2,5	43
D	1,2	72,8	26,0	1,5	134
\mathbf{REF}	0,5	78,8	20,7	2,2	119

Las estaciones A, D y de referencia presentan un sedimento arenoso-fangoso (69%, 73% y 79% de arenas, y 21%, 26% y 21% de fangos, respectivamente), mientras que la estación B presenta sedimento gravoso (99% de gravas) y la estación C presenta un sedimento mixto de gravas y arenas (61% de gravas, 31% de arenas y 8% de fangos).

Estas diferencias en la composición granulométrica, no se reflejan en el contenido en materia orgánica, que son relativamente homogéneos (1,5-2,5%). El valor máximo se ha medido precisamente en una de las estaciones con menor contenido en materiales finos (estación C), mientras que el valor mínimo se ha medido precisamente en la estación con mayor contenido en fangos (estación D).

Por último, en lo que respecta al potencial redox, es importante señalar que se han medido potenciales positivos en todas las estaciones (43-182 mV), lo cual indica una buena oxigenación de los sedimentos. *A priori*, esto favorecería el desarrollo de comunidades bentónicas bien estructuradas e indicaría ausencia de exceso de materia orgánica en el sedimento.

1.2.1.2 Parámetros estructurales de las comunidades bentónicas

Los datos brutos correspondientes a este apartado pueden verse en el **Anexo I**.

En la **Tabla 3** se muestra el número de *taxa* identificados, así como el porcentaje que representan por cada *phylum*.

Tabla 3. Número de taxa identificados y porcentaje que representan por cada phylum.

ESTACIÓN A C REF

ESTACIÓN	A		C		RE	F
PHYLUM	nº <i>taxa</i>	%	nº <i>taxa</i>	%	nº <i>taxa</i>	%
PORIFERA	-	-	1	1,0	-	-
CNIDARIA	2	4,3	4	3,9	2	4,4
<i>NEMERTEA</i>	1	2,1	2	2,0	1	2,2
ANNELIDA	20	42,6	57	55,9	18	40,0
ARTHROPODA	12	25,5	22	21,6	11	24,4
MOLLUSCA	10	21,3	9	8,8	12	26,7
SIPUNCULA	1	2,1	1	1,0	-	-
<i>ENTOPROCTA</i>	-	-	1	1,0	-	-
BRYOZOA	-	-	1	1,0	-	-
ECHINODERMATA	1	2,1	3	2,9	1	2,2
CHORDATA	-	-	1	1,0	-	-
TOTAL	47	100	102	100	45	100

Los anélidos constituyen el grupo más abundante en todas las estaciones, con 18-57 taxa (40-56% de los taxa identificados por estación). En las estaciones A y C el phylum de los artrópodos ocupa el segundo lugar, con 12 y 22 taxa (26% y 22% de los taxa), respectivamente, quedando el phylum de los moluscos en tercer lugar (10 y 9 taxa, respectivamente; 21% y 9% de los taxa por estación). En la estación de referencia estos grupos invierten sus dominancias, con mayor presencia de moluscos (12 taxa, 27% del total de la estación) que de artrópodos (11 taxa; 24% del total). Además de anélidos, moluscos y artrópodos, se han identificado también algunos poríferos, cnidarios, nemertinos, sipunculos, entoproctos, briozoos, equinodermos y cordados.

En cuanto a la distribución de densidades por *phylum*, se aprecia aproximadamente el mismo patrón que en la distribución de los *taxa*. Así, los anélidos dominan en las tres estaciones (177-1.248 ind m-²; 37-66% del total), seguidos por los moluscos en las estaciones A y REF (180 ind m-² y 127 ind m-², respectivamente; 30% y 29% de los efectivos) y por los artrópodos en la estación C (343 ind m-²; 18%). El tercer lugar corresponde a los cnidarios en las estaciones A y C (117 ind m-² y 163 ind m-², respectivamente; 19% y 9% de los efectivos), y a los artrópodos en la estación de referencia (50 ind m-²; 12%).

En biomasa, en cambio, los moluscos dominan en las tres estaciones, alcanzando valores de biomasa de 2,6-13,5 g·m⁻² (55-75% del total), seguidos por el *phylum* de los cnidarios (1,2-3,8 g·m⁻²; 19-24% del total). En las estaciones A y C, el tercer lugar corresponde a los anélidos, con 0,6 g·m⁻² y 2,2 g·m⁻² (3% y 14% de las biomasas totales); en la estación de referencia, en cambio, alcanzan mayor biomasa los equinodermos (0,4 g·m⁻²; 8%).

Los resultados descritos se ajustan, en parte, a lo esperado. Así, en la costa vasca lo más habitual es que dominen en densidad los anélidos, con artrópodos y moluscos como

principales grupos acompañantes. Por el contrario, en biomasa, habitualmente dominan moluscos y artrópodos, seguidos bien por los equinodermos (cuando alcanzan una densidad más o menos importante), bien por los anélidos. Esto se debe al peso extra que suponen las conchas de los moluscos, el exoesqueleto de los artrópodos y las placas calcificadas de los equinodermos. Por tanto, el único punto a destacar sería la alta importancia relativa de los cnidarios, posiblemente asociada a la presencia de piedras y gravas sobre los que fijarse.

Por especies, en la estación A domina el cnidario zoantario *Epizoanthus incrustatus* (113 ind ·m·²; 19% de la densidad de la estación). En cambio, en la estación C codominan los poliquetos *Mediomastus fragilis* y *Sabellaria spinulosa* (270 ind ·m·²; 14%). Por último, en la estación de referencia domina el poliqueto *Chaetozone gibber* (47 ind ·m·²; 11%). Ningún otro *taxon* alcanza una densidad relativa de al menos un 10% en ninguna de las tres estaciones analizadas.

E. incrustatus es una especie de cnidario del orden de los zoantarios. Son anémonas de vida tanto solitaria como colonial que pueden llegar a creces sobre gravas, conchas, e incluso sobre los exoesqueletos de artrópodos vivos. Su rango de distribución geográfica abarca todo el Atlántico y el Mediterráneo, desde zonas subtropicales hasta regiones tan septentrionales como las Svalbard o la costa canadiense. Se considera una especie sensible

a la alteración del medio (imagen: http://www.marlin.ac.uk/imgs/o_epiinc.jpg).

M. fragilis es un detritívoro subsuperficial que se alimenta de la materia orgánica presente en el sedimento. Este poliqueto se ve favorecido por aportes orgánicos externos, por lo que se considera tolerante al enriquecimiento orgánico, presentando densidades máximas en sedimentos enriquecidos en materia orgánica. Es una especie habitual en la costa vasca (imagen: http://www.genustraithandbook.org.uk/images/sized/min500/med iomastus_feature_head_jpj.jpg).

S. spinulosa es un poliqueto terebéllido que vive en el interior de un tubo que construye a partir de arena y fragmentos de conchas, llegando a construir auténticos arrecifes cuando alcanza altas densidades. Es un suspensívoro pasivo que se alimenta de fitoplancton. Se cree que es sensible a los cambios en los patrones de corrientes asociados a construcción de diques, a

dragados y a vertidos de materiales dragados (Vorberg, 2000) (imagen: http://www.wildaboutbritain.co.uk/pictures/data/18/medium/WABHoneycomb.jpg).

C. gibber es un pequeño cirratúlido típico de zonas protegidas con un sedimento mixto, aunque también se encuentra en sedimentos fangosos (Martínez y Adarraga, 2001). Es una especie de carácter oportunista de segundo orden que se ha descrito como uno de los primeros colonizadores tras episodios de contaminación por hidrocarburos (Armitage et al., 2000).

Utiliza sus largos palpos anteriores para recoger las partículas orgánicas presentes en la superficie del sedimento, por lo que se puede clasificar como depositívoro superficial. Suele medrar en sedimentos enriquecidos en materia orgánica (imagen de *Chaetozone* sp.: http://images.vliz.be/thumbs/9097_chaetozone-sp.jpg).

En cuanto a las biomasas, en la estación A dominan los moluscos bivalvos *Venus casina* (5,6 g·m⁻²; 31% de la biomasa de la estación) y *Acanthocardia tuberculata* (4,6 g·m⁻²; 25% de la biomasa), y el zoantario *E. incrustatus* (3,8 g·m⁻²; 21%). Por otro lado, en la estación C destaca el molusco *Ocinebrina aciculata* (6,3 g·m⁻²; 40%), seguido también por *E. incrustatus* (3,0 g·m⁻²; 19%). Por último, en la estación de referencia destacan otros dos moluscos, como son *Euspira pulchella* (1,2 g·m⁻²; 25%) y *Tellina compressa* (0,5 g·m⁻²; 11%), así como el zoantario *E. incrustatus* (1,2 g·m⁻²; 24% de la estación).

V. casina es un bivalvo que puede alcanzar hasta 5 cm de diámetro. Se caracteriza por presentar una concha cubierta de marcadas costillas concéntricas. Vive a profundidades que van del sublitoral hasta el borde de la plataforma continental, sobre sustratos entre arenosos y de gravas. Es una especie que se considera sensible a la alteración del medio (imagen: http://www.eumed.net/malakos/Images/Venus casina.jpg).

A. tuberculata es una especie de berberecho que puede alcanzar hasta 6 cm de diámetro que habitualmente habita zonas de arenas gruesas o gravas (con fuertes corrientes) de hasta 80 m de profundidad. En general, este tipo de bivalvos se consideran suspensíviros, ya que se alimentan por filtración de la materia orgánica que se encuentra en suspensión (imagen:

http://www.aphotomarine.com/images/marine_bivalves_turk/acanthocardia_tuberculata_29 -05-12_1.jpg).

El gasterópodo murícido *O. aciculata* es un pequeño caracolillo que habitualmente se encuentra sobre sustratos rocosos, lo que explica que en la campaña de enero de 2013 se encontrara únicamente en la estación C, donde había una fracción gravosa importante. Se trata de una especie que se encuentra a lo largo de todas las costas europeas, incluyendo las del Mediterráneo y también las islas Azores. Se considera una especie indiferente a la alteración del medio, por lo que se encuentra en

zonas poco o nada alteradas, y raramente llega a ser dominante (imagen: http://www.gastropods.com/Shell_Images/N-O/Ocinebrina_aciculata_4.jpg).

E. pulchella es un caracolillo que suele vivir sobre sustratos de tipo arenoso. A menudo se encuentra enterrado en el sedimento, ya que se alimenta de los bivalvos que encuentra también enterrados. Se trata, por tanto, de un gasterópodo de hábitos carnívoros. Se considera indiferente a la alteración del medio ya que se encuentra en zonas poco o nada alteradas, donde

T. compressa es un pequeño molusco bivalvo habitual en la costa vasca. Su presencia en el Golfo de Vizcaya constituye una importante anomalía biogeográfica, ya que se trata de una especie característica de las costas atlánticas africanas y del Mediterráneo (Martínez et al., 2007). Se considera una especie

sensible a la alteración del medio, ya que, aunque pueda ser habitual sobre sedimentos poco o nada alterados, raramente llega a alcanzar densidades relativas tales que la sitúen entre las especies dominantes de la comunidad (imagen: http://www.idscaro.net/sci/04_med/pictures/fam5/tellina_compressa1.jpg).

En la **Tabla 4** se muestran los parámetros estructurales correspondientes al área de estudio. La densidad de las estaciones A y de referencia (607 ind m⁻² y 430 ind m⁻², respectivamente) es moderada, mientras que la de la estación C puede considerarse alta (1.903 ind m⁻²). Los valores de biomasa, en cambio, pueden considerarse entre altos y muy altos para todas las estaciones (4,8-18,1 g m⁻²). Por tanto, la relación entre biomasa y densidad es alta, lo cual indica que la comunidad está formada por individuos relativamente grandes, con un promedio de 8-30 mg ind⁻¹ en peso seco, que habitualmente suelen ser especies estructuradoras de comunidad. En cuanto a la riqueza específica, se puede considerar moderada para las estaciones A y de referencia (47 taxa y 45 taxa, respectivamente), y alta para la estación C (102 taxa).

Tabla 4. Parámetros estructurales de la comunidad bentónica del área de estudio, en la campaña de enero de 2013.

	ESTACIÓN	Α	C	REF
Densidad	(ind m^{-2})	607	1.903	430
Biomasa	$(\mathbf{g} \cdot \mathbf{m}^{-2})$	18,078	15,513	4,771
Riqueza	(nº de <i>taxa</i>)	47	102	45
Diversidad (en densidad)	(bit ind $^{-1}$)	4,63	$5,\!22$	4,68
Diversidad (en biomasa)	(bit g^{-1})	2,67	$3,\!27$	3,28
Diversidad máxima	(bit)	$5,\!55$	6,67	5,49
Equitabilidad (en densidad)		0,83	0,78	0,85
Equitabilidad (en biomasa)		0,48	0,49	0,60

Los valores de diversidad estimados a partir de los datos de densidad se consideran altos (4,63-5,22 bit ind⁻¹), al igual que los valores de equitabilidad (0,78-0,85). En cambio, cuando se calculan a partir de los datos de biomasa se obtienen valores menores tanto para las diversidades (2,67-3,28 bit g⁻¹) como para las equitabilidades (0,48-0,60), probablemente debido a la clara dominancia en biomasa de las especies arriba citadas.

En general, la composición de la macrofauna parece indicar que corresponde a una comunidad de *Tellina* - *Venus*, descrita para los fondos arenosos sublitorales de entre 10 m y 70 m de profundidad en el sudeste del Golfo de Vizcaya (Borja *et al.*, 2004). Dicha comunidad se caracterizaría, además de por las especies de los géneros *Tellina* y *Venus*, por una presencia importante de poliquetos de los géneros *Nephtys* y *Glycera*, del molusco

bivalvo *Nucula sulcata*, y del equinodermo *Echinocardium cordatum*, todas ellas presentes en las muestras tomadas. En comparación con los rangos de valores propuestos para los parámetros estructurales por Borja *et al.* (2004), los valores estimados a partir de las muestras tomadas en la campaña de enero de 2013 se encuentran en su parte superior o por encima de él.

COEFICIENTE BIÓTICO (AMBI)

La clasificación de la zona de estudio a partir del índice AMBI (Borja *et al.*, 2000; 2003; Borja y Muxika, 2005; Muxika *et al.*, 2005; Muxika, 2007) es de ligeramente alterada (**Tabla 5**), con una comunidad de macroinvertebrados bentónicos desequilibrada, salvo la estación A, que se encuentra no alterada (con una comunidad empobrecida).

La desviación típica de los valores promediados de AMBI para las réplicas correspondientes a cada una de las estaciones, es relativamente baja en todos los casos ($\approx 0,1$). Esto indica una alta homogeneidad entre réplicas y da idea de la robustez de las estimas obtenidas.

Tabla 5. Porcentajes de presencia de cada grupo ecológico (GE) y valores correspondientes del AMBI para cada réplica y AMBI promedio por estación junto con la desviación típica correspondiente.

ESTACIÓN		A			C			REF	
RÉPLICA	1	2	3	1	2	3	1	2	3
GE I	56,4	62,7	68,6	49,5	41,7	51,3	57,1	55,3	44,6
$\mathbf{GE}\mathbf{II}$	16,7	15,7	3,9	29,4	25,0	10,6	11,4	13,2	16,1
$\mathbf{GE}\;\mathbf{III}$	16,7	13,7	21,6	16,2	29,2	36,3	22,9	13,2	32,1
$\mathbf{GE}\ \mathbf{IV}$	10,3	7,8	5,9	4,9	4,2	1,8	8,6	18,4	7,1
GE V	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
AMBI	1,212	1,000	0,971	1,147	1,438	1,327	1,243	1,421	1,527
AMBI (promedio)	•	1,061		•	1,304			1,397	
Desviación típica		0,131			0.147			0,143	

Se procedió a comprobar la condición de homogeneidad de varianzas entre estaciones por medio de un test de Levene. Los resultados indicaron homoscedasticidad (F=0,003; gl₁=2; gl₂=6; p=0,997). Por tanto, se procedió a comprobar si los residuales presentaban una distribución normal por medio de un test de Shapiro-Wilk. Los resultados indicaron normalidad (W=0,896; gl=9; p=0,227). Al cumplirse las dos condiciones, se llevó a cabo un ANOVA de una vía para comprobar si existían diferencias significativas entre estaciones para los valores de AMBI estimados. Así, los resultados indican que no existen diferencias significativas entre estaciones (F=4,555; gl=2; p=0,063).

En cuanto a las abundancias relativas de los grupos ecológicos (GE), destaca la ausencia total de especies adscritas al GE V (oportunistas de primer orden), que se ven favorecidas por una alteración importante del medio y proliferan en sedimentos reducidos y ricos en materia orgánica. Sin embargo, sí aparecen especies del GE IV (oportunistas de segundo orden), grupo formado por pequeñas especies que proliferan en situaciones de estrés. En cualquier caso, estas especies no alcanzan densidades relativas importantes (2-10%), salvo en una de las réplicas de la estación de referencia, en la que llegan a representar el 18% de la densidad total de la réplica.

Las especies sensibles a la alteración del medio, que se asignan al GE I, dominan en todas las réplicas (42-69%). Las especies indiferentes a la alteración (GE II) y las especies tolerantes al enriquecimiento orgánico también alcanzan densidades relativas más o menos importantes (4-29% y 13-36%, respectivamente).

En resumen, el reparto entre GE parece indicar que las comunidades de macroinvertebrados bentónicos analizadas no se encuentran sometidas a situaciones de estrés importantes, aunque presentan cierto desequilibrio pues las especies tolerantes al enriquecimiento orgánico presentan densidades relativas más o menos importantes, habiéndose detectado además la presencia de algunas especies oportunistas (aunque no dominan), indicadoras de alteración. En cualquier caso, el hecho de que los valores mayores de AMBI se hayan medido precisamente para las estaciones C y de referencia, situadas en dos de los vértices de la instalación, y no en la estación A, situada en el centro de la instalación, hace pensar que, probablemente, la presencia de mejillones (instalados desde octubre de 2012) no sea la causa de que los valores de AMBI no sean menores.

1.2.2 Campaña de otoño de 2013

1.2.2.1 Características generales del sustrato

En la **Tabla 6** se resumen los resultados del análisis granulométrico, agrupados en función del diámetro de partícula en las categorías de gravas ($\emptyset \ge 2$ mm), arenas ($2 > \emptyset \ge 0,063$ mm) y fangos ($\emptyset < 0,063$ mm), y de la estimación de la materia orgánica de los sedimentos obtenidos en los puntos de muestreo para la caracterización de las comunidades bentónicas, así como del potencial redox.

Tabla 6. Resultados del análisis granulométrico de los sedimentos de las estaciones de control y de referencia para el estudio de las comunidades bentónicas de sustrato blando (Gravas, Arenas y Fangos), concentración de materia orgánica en sedimento (MO) y potencial redox (RedOx).

ESTACIÓN	Gravas (%)	Arenas (%)	Fangos (%)	MO (%)	RedOx (mV)
A	0,8	77,7	21,5	1,9	357
В	0,5	73,1	26,5	2,3	196
C	83,3	12,9	3,8	1,2	227
D	1,5	72,5	26,1	2,2	202
REF	0,7	80,7	18,6	2,1	347

Todas las estaciones de muestreo, salvo la estación C, presentan un sedimento arenoso-fangoso (72-81% de arenas y 19-26% de fangos), con una fracción gravosa prácticamente despreciable (<2%). Por el contrario, la estación C presenta naturaleza gravosa (83%), con contenidos menores de arenas (13%) y fangos (4%).

Estas diferencias en la composición granulométrica, se reflejan en el contenido en materia orgánica, que es menor en la estación C (1,2%), que en el resto (1,9-2,3%). Además, el valor máximo se ha medido precisamente en la estación con mayor contenido en materiales finos (estación B).

Por último, en lo que respecta al potencial redox, es importante señalar que se han medido potenciales positivos en todas las estaciones (196-357 mV), lo cual indica una buena oxigenación de los sedimentos. *A priori*, esto favorecería el desarrollo de comunidades bentónicas bien estructuradas e indicaría ausencia de exceso de materia orgánica en el sedimento.

En comparación con los resultados de la campaña de invierno, es de destacar que el contenido en gravas es inferior en todas las estaciones (especialmente en la estación B, en la que se pasa de un 99% a un 1%), salvo en la estación C, en la que se observa un importante incremento (de un 61% a un 83%). En cambio, el contenido en materiales finos se mantiene más o menos constante, salvo en la estación B, en la que se produce un incremento (de un 0% a un 26%). Del mismo modo, tampoco se detectan cambios importantes en el contenido en materia orgánica.

Con el fin de determinar si existía un aporte reciente de materia orgánica, se tomaron también muestras superficiales para análisis de contenido en materia orgánica. Las concentraciones medidas indican que no existen diferencias significativas respecto a las concentraciones medidas en invierno (2,0%, 1,9%, 2,3%, 2,3% y 2% para las estaciones A, B, C, D y de referencia, respectivamente), por lo que no se considera probable que se haya producido un aporte importante de materia orgánica por parte de los mejillones instalados.

Por último, el potencial redox aumenta en todas las estaciones, aunque hay que resaltar que en la campaña de invierno el potencial redox también era positivo, por lo que probablemente el cambio no afecta significativamente al estado de las comunidades bentónicas. en el contenido en materia orgánica que se ha producido en la estación 1, situada justo debajo del copo de la jaula, donde se ha pasado de un contenido del 2,8% al 6,3%. Este importante enriquecimiento, podría llegar a afectar a las comunidades de macroinvertebrados bentónicos de la zona, favoreciendo en desarrollo de las poblaciones de especies tolerantes al enriquecimiento e incluso oportunistas. Posiblemente en relación con este enriquecimiento, el potencial RedOx medido en la estación 1 es menor en la campaña de 2013 que en la campaña preoperacional. Sin embargo, sigue siendo positivo, lo cual indica que se mantiene una oxigenación adecuada de los sedimentos y que, posiblemente, el efecto sobre las comunidades bentónicas no irá más allá de un desequilibrio en la distribución de especies.

1.2.2.2 Sustrato blando

PARÁMETROS ESTRUCTURALES

Los datos brutos correspondientes a este apartado pueden verse en el **Anexo II**.

En la Como en la campaña de invierno, los anélidos constituyen el grupo más abundante en todas las estaciones, con 28-51 *taxa* (41-66% de los *taxa* identificados por estación). Los artrópodos constituyen el segundo grupo en cuanto a número de *taxa* diferentes identificados (15-21 *taxa*; 20-30% por estación), seguidos por los moluscos (7-15

taxa; 9-22% del total). Además de anélidos, artrópodos y moluscos, se han identificado también algunos cnidarios, platelmintos, nemertinos, sipuncúlidos y equinodermos.

Respecto a la pasada campaña de invierno, no se aprecian grandes diferencias en la composición por *phyla*. Únicamente destaca que en la campaña de otoño no se hayan encontrado algunos grupos como los poríferos, entoproctos, briozoos y cordados. Otra diferencia es que en la estación de referencia en otoño hay más *taxa* de artrópodos que de moluscos (en invierno eran más abundantes los moluscos), aunque en ninguna de las campañas las diferencias en el número de *taxa* entre ambos *phyla* son importantes.

Tabla 7 se muestra el número de *taxa* identificados, así como el porcentaje que representan por cada *phylum*.

Como en la campaña de invierno, los anélidos constituyen el grupo más abundante en todas las estaciones, con 28-51 taxa (41-66% de los taxa identificados por estación). Los artrópodos constituyen el segundo grupo en cuanto a número de taxa diferentes identificados (15-21 taxa; 20-30% por estación), seguidos por los moluscos (7-15 taxa; 9-22% del total). Además de anélidos, artrópodos y moluscos, se han identificado también algunos cnidarios, platelmintos, nemertinos, sipuncúlidos y equinodermos.

Respecto a la pasada campaña de invierno, no se aprecian grandes diferencias en la composición por *phyla*. Únicamente destaca que en la campaña de otoño no se hayan encontrado algunos grupos como los poríferos, entoproctos, briozoos y cordados. Otra diferencia es que en la estación de referencia en otoño hay más *taxa* de artrópodos que de moluscos (en invierno eran más abundantes los moluscos), aunque en ninguna de las campañas las diferencias en el número de *taxa* entre ambos *phyla* son importantes.

Tabla 7. Número de	taxa identificados y porcentaje	que representan por
cada phylum.		

ESTACIÓN	A		C		REF		
PHYLUM	nº <i>taxa</i>	%	nº <i>taxa</i>	%	nº <i>taxa</i>	%	
CNIDARIA	1	1,4	1	1,3	3	4,5	
PLATYHELMINTHES	3 -	-	1	1,3	-	-	
NEMERTEA	2	2,9	1	1,3	1	1,5	
ANNELIDA	28	40,6	51	66,2	32	48,5	
ARTHROPODA	21	30,4	15	19,5	15	22,7	
MOLLUSCA	15	21,7	7	9,1	13	19,7	
SIPUNCULA	1	1,4	-	-	1	1,5	
ECHINODERMATA	1	1,4	1	1,3	1	1,5	
TOTAL	69	100	77	100	66	100	


En cuanto a la distribución de densidades por *phylum*, se aprecia aproximadamente el mismo patrón que en la distribución de los *taxa*. Así, los anélidos dominan en todas las estaciones (283-1.325 ind m⁻²; 41-72% de la densidad). En las estaciones A y C, segundo lugar corresponde a los artrópodos, con 220 ind m⁻² (28%) y 217 ind m⁻² (12%), mientras que en la estación de referencia son más abundantes los moluscos, con 213 ind m⁻² (31% de los efectivos), frente a 110 ind m⁻² (16%) de artrópodos. En las estaciones A y C, son los

moluscos los que ocupan el tercer lugar, con 203 ind m⁻² (26%) y 175 ind m⁻² (10%), respectivamente.

Respecto a la campaña de enero, se mantiene la dominancia de los anélidos. En cambio, en la estación A los artrópodos superan a los moluscos (más abundantes en enero). Además, en enero, el tercer lugar lo ocupaban los cnidarios en las estaciones A y C, siendo en octubre más abundantes los moluscos.

En biomasa, en cambio, los moluscos dominan en las tres estaciones, alcanzando valores de biomasa de 2,7-10,3 g m⁻² (39-79% del total). En segundo lugar, en las estaciones A y C, se encuentran los anélidos, con 0,6 g m⁻² (15% de la biomasa total) y 2,8 g m⁻² (35% de la biomasa), respectivamente; en cambio, en la estación de referencia, el segundo lugar corresponde a los equinodermos (0,9 g m⁻²; 7%), quedando los anélidos relegados al tercer lugar (0,8 g m⁻²; 6%). Por último, los equinodermos ocupan el tercer lugar en la estación A (0,3 g m⁻²; 7%), mientras que en la estación C son más abundantes los cnidarios (1,2 g m⁻²; 15%).

En comparación con la campaña de enero, destaca la mayor biomasa relativa de los anélidos en las estaciones A y C, ya que en enero eran más abundantes los cnidarios, quedando los anélidos relegados al tercer lugar. Además, en la estación A, los equinodermos también son más abundantes que los cnidarios en la campaña de octubre. Del mismo modo, en la estación de referencia, en octubre los equinodermos y los anélidos superan a los cnidarios.

Tal y como se ha comentado en el apartado relativo a los resultados de la campaña de enero, los resultados se ajustan a lo esperado con dominancia en densidad de anélidos, artrópodos y moluscos, y dominancia en biomasa de moluscos. Como se ha comentado en el apartado correspondiente a los resultados de la campaña de enero, también destaca la alta biomasa relativa de los cnidarios en la estación C, así como la de los anélidos en las tres estaciones. También cabe destacar que los artrópodos no se encuentren entre los *phyla* dominantes en biomasa en ninguna de las tres estaciones.

Por especies, destaca que ni en la estación A ni en la estación C hay ninguna especie claramente dominante (ninguna presenta densidades relativas ≥10%). Las especies más abundantes serían el molusco bivalvo *Thyasira flexuosa* en las estaciones A (60 ind m⁻²; 8% de los efectivos de la estación) y de referencia (83 ind m⁻²; 12% de la densidad), mientras que en la estación C la especie más abundante es el poliqueto *M. fragilis* (167 ind m⁻²; 9%). En la estación de referencia ninguna otra especie, aparte de *T. flexuosa*, alcanza el 10% de densidad relativa.

El molusco bivalvo *T. flexuosa* es un pequeño detritívoro superficial que se alimenta de la materia orgánica presente en la superficie del sedimento. Se considera una especie tolerante al enriquecimiento en materia orgánica, por lo que aumenta su densidad cuando se producen aportes externos (imagen: http://www.mbari.org/benthic/images/Macrofauna_2/Thyasira_flexuosa.jpg).

En cuanto a las biomasas, en la estación A dominan los moluscos bivalvos *Nucula sulcata* (0,8 g m⁻²; 21% de la biomasa total de la estación) y *Timoclea ovata* (0,5 g m⁻²; 11% del total). En la estación C, en cambio, dominan el bivalvo *T. compressa* (1,8 g m⁻²; 27%) y el zoantario *E. incrustatus* (1,2 g m⁻²; 18%). Por último, en la estación de referencia, domina el molusco bivalvo *Chamelea striatula* (7,7 g m⁻²; 59%).

El molusco bivalvo *N. sulcata* es un pequeño detritívoro superficial, que se alimenta de partículas orgánicas que obtiene de la superficie del sedimento. Se considera una especie sensible a situaciones de estrés como pueden ser aquéllas ocasionadas por concentraciones altas de materia orgánica en el sedimento o la disminución de la concentración de oxígeno disuelto en las capas de agua cercanas al fondo, entre otras (imagen: http://www.habitas.org.uk/marinelife/mollusca/23738b.jpg).

T. ovata es un bivalvo típico de zonas de gravas o arenas gruesas que puede llegar a dominar también en densidad si los intersticios están llenos de partículas finas (Glémarec, 1973). Martínez y Adarraga (2001) lo encuentran frente a Punta Monpás desde los 35 m de profundidad hasta los 225 m en sustratos de tipo fangoso y hasta de arenas gruesas. Se trata de un suspensívoro que se alimenta de las partículas suspendidas

en la capa de agua que se encuentra en contacto con el sedimento, haciendo pasar una corriente de agua a través de sus sifones. Se considera sensible a la alteración del medio, especialmente a la de tipo físico (imagen: http://www.marlin.ac.uk/imgs/o_timova.jpg).

C. striatula es una almeja de hasta 45 mm que habita sobre fondos arenosos o arenoso-fangosos situados entre la bajamar y 55 m de profundidad. Es una especie muy común y se encuentra desde el Mar del Norte hasta el Mar Negro, pasando

por el Mediterráneo, así como por toda la costa ibérica en incluso en Madeira, las Islas Canaria y a lo largo de la costa

de Marruecos. Es una especie que se considera sensible a la alteración del medio (imagen: http://www.biolib.cz/IMG/GAL/94721.jpg).

En comparación con la campaña de enero, en densidad, destaca que *T. flexuosa* sustituye como especie más abundante a

E. incrustatus y C. gibber en las estaciones A y de referencia, respectivamente. En cambio, en la estación C, M. fragilis sigue siendo la especie más abundante, aunque disminuye su abundancia relativa. También se observan cambios en las dominancias en biomasa, siendo sustituidos: en la estación A los bivalvos V. casina y A. tuberculata, y el zoantario E. incrustatus, por los bivalvos N. sulcata y T. ovata; en la estación C, el gasterópodo O. aciculata por el bivalvo T. compressa, aunque en octubre E. incrustatus mantiene una dominancia relativa similar a la de enero (18% en octubre, frente a 19% en enero); y, en la estación de referencia, los moluscos E. pulchella y T. compressa, y el zoantario E. incrustatus, por el bivalvo C. striatula.

En la Los valores de diversidad estimados a partir de los datos de densidad se consideran altos (5,18-5,66 bit ind⁻¹), mayores incluso que los de la campaña de enero, al igual que los valores de equitabilidad (0,86-0,90). En cambio, cuando se calculan a partir de los datos de biomasa se obtienen valores menores tanto para las diversidades (2,65-4,35 bit g⁻¹) como para las equitabilidades (0,44-0,69), probablemente debido a las dominancias más claras en biomasa, especialmente en la estación de referencia, a la que corresponden los valores mínimos de ambos parámetros (las estaciones A y C, presentan valores similares).

Tabla 8 se muestran los parámetros estructurales correspondientes al área de estudio. Como en la campaña de enero, la densidad estimada para las estaciones A y de referencia (793 ind m⁻² y 687 ind m⁻², respectivamente) es moderada, mientras que la de la estación C puede considerarse alta (1.833 ind m⁻²). En cambio, también como en enero, los valores de biomasa, pueden considerarse entre altos y muy altos para todas las estaciones (4,1-13,1 g m⁻²). Por tanto, la relación entre biomasa y densidad es alta, lo cual indica que la comunidad bentónica está formada por individuos relativamente grandes, con un promedio de 4-19 mg ind⁻¹ en peso seco, que habitualmente suelen ser especies estructuradoras de comunidad. En cualquier caso, hay que, en promedio, el tamaño de los individuos se reduce prácticamente a la mitad, siendo la estación de referencia la única en la que el tamaño medio de los individuos no sólo no disminuye, sino que aumenta. En cuanto a la riqueza específica, se observa cierta homogeneización respecto a la campaña de enero, habiéndose medio en octubre valores intermedios a los de enero (66-77 taxa).

Los valores de diversidad estimados a partir de los datos de densidad se consideran altos (5,18-5,66 bit ind⁻¹), mayores incluso que los de la campaña de enero, al igual que los valores de equitabilidad (0,86-0,90). En cambio, cuando se calculan a partir de los datos de biomasa se obtienen valores menores tanto para las diversidades (2,65-4,35 bit g⁻¹) como para las equitabilidades (0,44-0,69), probablemente debido a las dominancias más claras en biomasa, especialmente en la estación de referencia, a la que corresponden los valores mínimos de ambos parámetros (las estaciones A y C, presentan valores similares).

Tabla 8. Parámetros estructurales de la comunidad bentónica del área de estudio, en la campaña de octubre de 2013.

	ESTACIÓN	Α	C	REF
Densidad	(ind ·m ⁻²)	793	1.833	687
Biomasa	$(\mathbf{g} \cdot \mathbf{m}^{-2})$	4,068	8,009	13,050
Riqueza	(nº de <i>taxa</i>)	69	77	66
Diversidad (en densidad)	(bit ind^{-1})	5,46	5,66	5,18
Diversidad (en biomasa)	(bit g ⁻¹)	4,22	4,35	2,65
Diversidad máxima	(bit)	6,11	$6,\!27$	6,04
Equitabilidad (en densidad)		0,89	0,90	0,86
Equitabilidad (en biomasa)		0,69	0,69	0,44

A pesar de los cambios en las dominancias, la composición de la fauna, en general, es similar a la descrita para la campaña de enero de 2013. Así, sigue distinguiéndose la comunidad de *Tellina - Venus* (Borja *et al.*, 2004). Como ya se ha indicado en la descripción correspondiente a la campaña de enero de 2013, dicha comunidad se caracterizaría, además de por las especies de los géneros *Tellina y Venus*, por una presencia importante de

poliquetos *Nephtys* sp., *Glycera* sp. y *Spiophanes bombyx*, del artrópodo *Urothoe elegans*, de los moluscos bivalvos *N. sulcata* y *C. striatula*, y del equinodermo *E. cordatum*, todas ellas presentes en las muestras tomadas.

Respecto a la campaña de enero, destaca que *Nephtys cirrosa* sustituye a *Nephtys hombergii* en la estación C, y se incorporan *Glycera alba* a las estaciones C y de referencia, y *S. bombyx* a las tres estaciones analizadas, así como *U. elegans* a la estación A y *C. striatula* a la estación de referencia.

En cuanto a los parámetros estructurales, los valores tomados a partir de las muestras tomadas en la campaña de octubre de 2013 se encuentran por encima de los rangos propuestos por Borja et al. (2004) para la comunidad de Tellina – Venus de fondos arenosos sublitorales de entre 10 m y 70 m de profundidad en el sudeste del Golfo de Vizcaya (en enero se encontraban también por encima o en la parte superior de los rangos). Tan sólo la biomasa se mantiene dentro del rango en las estaciones A y C (en la de referencia también se superan los valores del rango propuesto).

COEFICIENTE BIÓTICO (AMBI)

La clasificación de la zona de estudio a partir del índice AMBI (Borja *et al.*, 2000; 2003; Borja y Muxika, 2005; Muxika *et al.*, 2005; Muxika, 2007) es de ligeramente alterada (**Tabla 9**), con una comunidad de macroinvertebrados bentónicos desequilibrada.

La desviación típica de los valores promediados de AMBI para las réplicas correspondientes a cada una de las estaciones, es relativamente baja en casi todos los casos (<0,5). Esto indica una alta homogeneidad entre réplicas y da idea de la robustez de las estimas obtenidas.

Se procedió a comprobar la condición de homogeneidad de varianzas entre estaciones por medio de un test de Levene. Los resultados indicaron homoscedasticidad (F=1,169; gl₁=2; gl₂=6; p=0,373). Por tanto, se procedió a comprobar si los residuales presentaban una distribución normal por medio de un test de Shapiro-Wilk. Los resultados indicaron normalidad (W=0,979; gl=9; p=0,957). Al cumplirse las dos condiciones, se llevó a cabo un ANOVA de una vía para comprobar si existían diferencias significativas entre estaciones para los valores de AMBI estimados. Así, los resultados indican que no existen diferencias significativas entre estaciones (F=0,079; gl=2; p=0,925).

Tabla 9. Porcentajes de presencia de cada grupo ecológico (GE) y valores correspondientes del AMBI para cada réplica y AMBI promedio por estación junto con la desviación típica correspondiente.

ESTACIÓN		A			С			REF	
RÉPLICA	1	2	3	1	2	3	1	2	3
GE I	38,9	46,4	48,6	38,6	51,2	45,0	53,7	41,5	37,5
$\mathbf{GE}\ \mathbf{II}$	10,5	20,3	20,8	11,4	17,1	15,0	17,9	15,4	20,8
$\mathbf{GE}\;\mathbf{III}$	32,6	21,7	27,8	40,9	27,9	27,5	11,9	33,8	26,4
GE IV	5,3	4,3	1,4	9,1	3,9	10,0	10,4	7,7	13,9
GE V	12,6	7,2	1,4	0,0	0,0	2,5	6,0	1,5	1,4
AMBI	2,132	1,587	1,292	1,807	1,267	1,650	1,455	1,685	1,813
AMBI (promedio)		1,670			1,575			1,651	
Desviación típica		0,426			0,277			0,181	

En cuanto a las abundancias relativas de los grupos ecológicos (GE), en contraposición a lo descrito para la campaña de enero, destaca la presencia de especies adscritas al GE V (oportunistas de primer orden) en las tres estaciones analizadas, aunque con bajas densidades relativas (0-13% por réplica). Las especies oportunistas de segundo orden, en cambio, mantienen densidades relativas similares a las de enero (1-14%).

A pesar de esto, las especies sensibles a la alteración del medio siguen dominando en todas las réplicas (38-54%), salvo en una de las réplicas de la estación C, en la que dominan las especies tolerantes a la alteración (41%, frente a 39% de especies adscritas al GE I). Precisamente las especies adscritas al GE III se encuentran en segundo lugar en cuanto a densidades relativas en el resto de réplicas (22-34%), salvo en una de las réplicas de la estación de referencia, en que presentan mayor densidad relativa las especies indiferentes a la alteración (18%, frente a 12% de especies adscritas al GE III).

Por último, las especies adscritas al GE II presentan densidades relativas del 11-21% por réplica, en el rango de las estimadas en la campaña de enero de 2013.

En cuanto a las posibles diferencias entre los valores de AMBI de una y otra campaña, se procedió a comprobar la condición de homogeneidad de varianzas entre grupos (combinación de estación y campaña) por medio de un test de Levene. Los resultados indicaron homoscedasticidad (F=1,708; gl₁=5; gl₂=12; p=0,207). Por tanto, se procedió a comprobar si los residuales presentaban una distribución normal por medio de un test de Shapiro-Wilk. Los resultados indicaron normalidad (W=0,981; gl=18; p=0,957). Al cumplirse las dos condiciones, se llevó a cabo un ANOVA de dos vías para comprobar si existían diferencias significativas entre estaciones para los valores de AMBI estimados. El modelo factorial incluyendo la interacción entre los factores campaña y estación de muestreo no resultó significativo (F=2,867; gl=5; p=0,063), por lo que, en vista de que la interacción entre factores tampoco lo era (F=1,030; gl=2; p=0,386), se llevó a cabo otro ANOVA excluyendo el efecto de la interacción. Así, se obtuvo un modelo significativo (F=4,073; gl=3; p=0,028), que muestra la existencia de diferencias significativas entre campañas (F=10,939; gl=1; p=0,005), pero no entre estaciones (F=0,641; gl=2; p=0,542). De estos resultados se desprende la existencia de un incremento en los valores medios de AMBI entre enero y octubre (de 1,254 a 1,632), que podría deberse a la presencia de mejillones en la instalación. Por otro lado, la ausencia de diferencias significativas entre estaciones y la ausencia de interacción significativa, podría indicar que la estación de referencia no es útil como tal, pues no presenta un valor de AMBI significativamente distinto del resto de estaciones.

Otra posible hipótesis es que podría existir algún factor externo no contemplado en el presente estudio, que haya afectado a las comunidades de macroinvertebrados bentónicos a una escala espacial más amplia. Esta hipótesis podría comprobarse a partir de los datos de la Red de Seguimiento del Estado Ecológico de las Aguas de Transición y Costeras de la Comunidad Autónoma del País Vasco (último informe, Borja et al., 2013), analizando si se han producido cambios en los valores de AMBI de las estaciones L-L20 y/o L-A10 (situadas frente al litoral de Lekeitio y de Ondarroa, respectivamente) entre las campañas de invierno de 2013 y de invierno de 2014 (toma de muestras aún pendiente).

En cualquier caso, aunque sea significativo, el aumento en los valores de AMBI no es muy grande, como muestra el hecho de que la calificación global de la zona se mantenga como ligeramente alterada, aunque habría que tenerlo en cuenta a la hora de valorar la capacidad de carga o los posibles efectos a largo plazo. Sin embargo, estos resultados están en línea con lo apuntado por otros autores, caso de Callier *et al.* (2009), que observaron una disminución de la proporción de especies sensibles y un aumento de oportunistas, lo cual implicaría un aumento en el valor de AMBI, en un experimento de mesocosmos con mejillones. Dichos autores encontraron también que había una respuesta brusca que podía deberse a la existencia de un umbral de densidad de mejillones (o de deposición de materia orgánica), por debajo del cual el efecto era más sutil. En un experimento dosis/respuesta con mejillones de la especie Mytilus edulis, Robert et al. (2013) encontraron que el umbral a partir del cual cabe esperar un cambio en las comunidades bentónicas se encuentra en el rango 200-400 mejillones m⁻². En ese mismo punto se produciría también una disminución en el tamaño medio de grano del sedimento. Se estima que en la concesión se han cultivado unas 8 t de mejillones de la especie Mytilus galloprovincialis, lo que supone una densidad, para el total del área ocupada por long-lines, de 84-131 ind m⁻². Esta densidad se encuentra por debajo de la densidad umbral indicada por Robert *et al.* (2013) para empezar a detectar cambios significativos. Esto concuerda con el bajo valor de AMBI estimado en la campaña de octubre, aunque se encuentren diferencias significativas respecto a la campaña de enero.

1.3 Conclusiones

Se han muestreado los fondos sedimentarios de la zona en la que se instaló la infraestructura, tanto en enero como en octubre de 2013. La primera de las campañas, aunque los primeros mejillones se instalaron en otoño de 2012, se considera preoperacional, mientras que la de octubre se usa como control del posible impacto de la instalación.

Los resultados de la caracterización general de los sedimentos indican cierta heterogeneidad espacial. En el área de estudio, el sedimento es predominantemente arenoso, pero las muestras tomadas en la estación C la fracción de gravas es mayoritaria en las dos campañas, y en la estación B también lo es en la campaña de enero.

En cuanto al contenido en materia orgánica, se midieron valores entre 1,2% y 2,5% en ambas campañas.

El potencial redox es positivo en las cinco estaciones en ambas campañas de muestreo (43-357 mV) y aunque los valores medidos son mayores en la campaña de octubre que en la

de enero, el sedimento tiene carácter oxidante en ambas campañas y, *a priori*, no presenta problemas de oxigenación.

Las muestras de macroinvertebrados bentónicos tomadas en las estaciones de sustrato blando han permitido identificar la presencia de la comunidad de *Tellina - Venus*, habitual en los fondos arenosos sublitorales de entre 10 m y 70 m de profundidad en el sudeste del Golfo de Vizcaya. Dicha comunidad se caracteriza, además de por la especie que le da nombre, por una presencia importante de poliquetos *Nephtys* sp., *Glycera* sp. y *Spiophanes bombyx*, del artrópodo *Urothoe elegans*, de los moluscos bivalvos *Nucula sulcata* y *Chamelea striatula*, y del equinodermo *Echinocardium cordatum*, todas ellas presentes en las muestras tomadas.

Los parámetros estructurales se encuentran en los rangos (normalmente cerca de los máximos) o por encima de los rangos correspondientes a la comunidad de *Tellina – Venus* en las tres estaciones muestreadas y en ambas campañas

El coeficiente biótico AMBI indica la presencia de una comunidad de macroinvertebrados bentónicos desequilibrada en las tres estaciones y en ambas campañas, correspondiente a una zona sometida a alteración ligera (salvo en la muestra tomada en enero en la estación A, que presentaba una comunidad empobrecida correspondiente a una zona con alteración nula). Sin embargo, los análisis estadísticos muestran que existen diferencias significativas entre ambas campañas (no entre estaciones), con un AMBI medio mayor en la campaña de octubre de 2013, que en la campaña de enero. A esto contribuye la presencia mayor de especies oportunistas, que se ven favorecidas por aportes de materia orgánica en las muestras tomadas en octubre.

Esto podría indicar cierta afección por parte de los mejillones mantenidos en la infraestructura. Sin embargo, el hecho de que la estación de referencia no presente diferencias significativas frente al resto de estaciones podría indicar, bien que la estación de referencia no se encuentra fuera del área de afección de la infraestructura (en cuyo caso no serviría como estación de referencia), bien que el incremento de AMBI no está relacionado con la actividad en la infraestructura, sino con algún factor no contemplado y que afecta a una escala espacial mayor, lo que podría llegar a comprobarse analizando muestras tomadas en alguna zona más alejada (por ejemplo, a partir de las muestras tomadas en los litorales de Lekeitio y Ondarroa en el marco de la Red de Seguimiento del Estado Ecológico de las Aguas de Transición y Costeras de la Comunidad Autónoma del País Vasco).

En cualquier caso, el incremento detectado en el valor de AMBI se considera asumible, ya que no afecta a la calificación de la zona. Sin embargo, habría que tenerlo en cuenta a la hora de valorar la capacidad de carga de la zona o los posibles efectos a un plazo mayor. Además, la densidad del cultivo se encuentra por debajo del umbral a partir del cual se esperarían cambios importantes en la estructura del sedimento y en las comunidades bentónicas.

1.4 Referencias

- Andrade, F.; Cancela Da Fonseca, L. 1979. Estratgia de amostragem num ecossistema bentónico estaurino visando a análise numérica de sus estructura e volução (estuario do Sado, Portugal). Actas del 1er Simposio Ibérico de Estudios del Bentos Marino, San Sebastián, II: 873-888.
- ARMITAGE, M.J.S.; REBFISCH, M.M.; BURTON, N.H.K. 2000. The impact of the <u>Sea Empress</u> oil spill on the abundance and distribution of waterbirds within Milford Haven. Final Report. British Trust for Ornithology Research Report No. 227, The Nunnery, Thetford, Norfolk, IP24 2PU: 84 pp.
- BORJA, Á.; MUXIKA, I. 2005. Guidelines for the use of AMBI (AZTI's marine biotic index) in the assessment of the benthic ecological quality. *Marine Pollution Bulletin*, 50: 787–789
- BORJA, Á.; FRANCO, J.; PÉREZ, V. 2000. The application of a Marine Biotic Index to different impact sources affecting soft-bottom benthic communities along European coasts. *Marine Pollution Bulletin*, 40: 1100-1114.
- BORJA, Á.; MUXIKA, I.; FRANCO, J. 2003. The application of a Marine Biotic Index to different impact sources affecting soft-bottom benthic communities along European coasts. *Marine Pollution Bulletin*, 46: 835-845.
- BORJA, Á.; AGUIRREZABALAGA, F.; MARTÍNEZ, J.; SOLA, J.C.; GARCÍA-ARBERAS, L.; GOROSTIAGA, J.M. 2004. Benthic communities, biogeography and resources management. En: Borja, Á., Collins, M. (Eds.), *Oceanography and Marine Environment of the Basque Country*. Elsevier Oceanography Series, vol. 70, Amsterdam: 455–492.
- Borja, Á.; Bald, J.; Belzunce, M.J.; Franco, J.; Garmendia, J.M.; Larreta, J.; Menchaca, I.; Muxika, I.; Revilla, M.; Rodríguez, J.G.; Solaun, O.; Uriarte, A.; Valencia, V.; Zorita, I.; Adarraga, I.; Aguirrezabalaga, F.; Cruz, I.; Laza, A.; Marquiegui, M.A.; Martínez, J.; Orive, E.; Ruiz, J.M.; Seoane, S.; Sola, J.C.; Manzanos, A. 2013. Red de seguimiento del estado ecológico de las aguas de transición y costeras de la Comunidad Autónoma del País Vasco. Informe de AZTI-Tecnalia para la Agencia Vasca del Agua. 20 Tomos: 641 pp.
- CALLIER, M.D.; RICHARD, M.; MCKINDSEY, C.W.; ARCHAMBAULT, P.; DESROSIERS, G. 2009. Responses of benthic macrofauna and biogeochemical fluxes to various levels of mussel biodeposition: An *in situ* "benthocosm" experiment. *Marine Pollution Bulletin*, 58: 1544-1553.
- FOLK, R.L. 1974. *Petrology of sedimentary rocks*. Hemphill Publishing Company, Austin, 182 pp.
- GEE, G.W.; BAUDER, J.W. 1986. Particle-size analysis. En: Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and Mineralogical Methods. American Society of Agronomy, Madison: 383–411.
- GLÉMAREC, M. 1973. The benthic communities of the European North Atlantic continental shelf. *Oceanography and Marine Biology: an Annual Review*, 11: 263-289.
- JONASZ, M. 1991. Size, shape, composition and structure of microparticles from light scattering. En: Syvitske, J.P.M. (Ed.), *Principles, methods, and application of particle size analysis*. Cambridge University Press, Cambridge: 143–162.
- LANGMUIR, D. 1971. Eh-pH determination. En: Carver, R.E. (Ed.), Sedimentary petrology. John Wiley & Sons: 597–634.
- MARTÍNEZ, J.; ADARRAGA, I. 2001. Distribución batimétrica de comunidades macrobentónicas de sustrato blando en la plataforma continental de Guipúzcoa (golfo de Vizcaya). Boletín del Instituto Español de Oceanografía, 17 (1 y 2): 33-48.

- MARTÍNEZ, J.; ADARRAGA, I.; RUIZ, J.M. 2007. Tipificación de poblaciones bentónicas de los fondos blandos de la plataforma continental de Guipúzcoa (sureste del golfo de Vizcaya). *Boletín del Instituto Español de Oceanografía*, 23: 85-110.
- MORA, J. 1982. Consideraciones generales sobre la macrofauna bentónica de la ría de Arosa. *Oecologia Aquatica*, 6: 41-50.
- MUXIKA, I. 2007. AMBI, una herramienta para la evaluación del estado de las comunidades bentónicas: modo de uso y aplicación a la <u>Directiva Marco del Agua</u>. Tesis Doctoral. Euskal Herriko Univertsitatea/Universidad del País Vasco, Leioa: 230 pp.
- MUXIKA, I.; BORJA, Á.; BONNE, W. 2005. The suitability of the marine biotic index (AMBI) to new impact sources along European coasts. *Ecological indicators*, 5: 19-31.
- MUXIKA, I.; IBAIBARRIAGA, L.; SAIZ, J.I.; BORJA, Á. 2007. Minimal sampling requirements for a precise assessment of soft-bottom macrobenthic communities, using AMBI. *Journal of Experimental Marine Biology and Ecology*, 349: 323-333.
- ROBERT, P.; MCKINDSEY, C.W.; CHAILLOU, G.; ARCHAMBAULT, P. 2013. Dose-dependent response of a benthic system to biodeposition from suspended blue mussel (*Mytilus edulis*) culture. *Marine Pollution Bulletin*, 66: 92-104.
- SEAPY, R.R.; KITTING, C.L. 1978. Spatial structure of an intertidal molluscan assemblage on a sheltered sandy beach. *Marine Biology*, 46: 137-145.
- SHANNON, C.E.; WEAVER, W. 1963. *The mathematical theory of communication*. Urbana University Press, Illinois: 117-127.
- VIÉITEZ, J.M. 1976. Ecología de poliquetos y moluscos de la playa de Meira (ría de Vigo). *Investigación Pesquera*, 40(1): 223-248.
- VORBERG, R. 2000. Effects of shrimp fisheries on reefs of *Sabellaria spinulosa* (Polychaeta). *ICES Journal of Marine Science*, **57**: 1416-1420.
- WILHM, J.L. 1968. Use of biomass units in Shannon's formule. *Ecology*, 49(1): 153-156.

2. Información complementaria

2.1 COMUNIDADES BENTÓNICAS DE SUSTRATO BLANDO:

Listado de los datos brutos de abundancia (en densidad y biomasa) totales y para cada una de las tres réplicas.

ESTACIÓN A		a		b		c	TOTAL (m ⁻²)	
ESPECIE	N° IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)
PHYLUM CNIDARIA								
Epizoanthus incrustatus	8	0,287	13	0,489	13	0,366	113	3,807
Edwardsia sp.	1	0,001					3	0,003
PHYLUM NEMERTEA								
Nemertea	1	0,001	1	0,000			7	0,003
PHYLUM ANNELIDA								
Nephtys hombergii	3	0,047	5	0,032			27	0,263
Glycera alba			1	0,003	2	0,020	10	0,078
Glycinde nordmanni	1	0,003					3	0,010
Aponuphis bilineata	1	0,003	1	0,007	1	0,007	10	0,056
Abyssoninoe hibernica	1	0,003					3	0,011
Lumbrineris lusitanica	2	0,007	1	0,004			10	0,037
Levinsenia gracilis	1	0,000					3	0,001
Paradoneis ilvana	1	0,000			1	0,000	7	0,001
Spio decoratus					1	0,000	3	0,001
Spiophanes kroyeri	4	0,002			2	0,002	20	0,013
Magelona johnstoni					1	0,001	3	0,004
Chaetozone gibber	7	0,009	3	0,003	1	0,001	37	0,044
Armandia cirrhosa	2	0,001			1	0,000	10	0,003
Mediomastus fragilis					1	0,000	3	0,001
Microclymene tricirrata					1	0,001	3	0,004
Myriochele danielsseni			1	0,000			3	0,001
Galathowenia oculata			4	0,000	1	0,000	17	0,001
Ampharete finmarchica	2	0,001	6	0,003	5	0,006	43	0,032
Terebellidae	1	0,003					3	0,011
Hydroides norvegicus					1	0,001	3	0,004
PHYLUM ARTHROPODA								
Diastylis laevis	1	0,000					3	0,001
Haplostylus normani					1	0,001	3	0,002
Ampelisca tenuicornis	2	0,001	2	0,001			13	0,005
Ampelisca typica					1	0,001	3	0,002
Leucothoe procera			1	0,001	1	0,000	7	0,003
Hippomedon sp.	1	0,001	1	0,002			7	0,009
Atylus vedlomensis	2	0,000					7	0,001
Melitidae	1	0,000					3	0,000
Autonoe spiniventris			2	0,000			7	0,001
Harpinia antennaria	1	0,000			2	0,000	10	0,002

ESTACIÓN A	•	a	1	b	-	c	TOTA	L (m ⁻²)
ESPECIE	Nº IND.	P. S. (g)						
Siphonoecetes striatus	1	0,001					3	0,002
Ebalia sp.			1	0,003			3	0,011
PHYLUM MOLLUSCA								
Euspira pulchella	1	0,002					3	0,008
Cylichna cylindracea	3	0,026			1	0,003	13	0,097
Nucula sulcata	7	0,194	1	0,016	4	0,086	40	0,984
Thyasira flexuosa	5	0,003	1	0,001	3	0,002	30	0,019
Acanthocardia tuberculata			1	1,369			3	4,564
Tellina compressa	11	0,275	2	0,002	5	0,012	60	0,965
Abra alba	1	0,025					3	0,083
Venus casina			2	1,681			7	5,602
Timoclea ovata	5	0,309					17	1,031
Corbula gibba	1	0,044					3	0,148
PHYLUM SIPUNCULA								
Aspidosiphon muelleri					1	0,002	3	0,006
PHYLUM ECHINODERMATA								
Amphiura filiformis	1	0,012	1	0,032			7	0,144

STACIÓN C		a	1	b		e	TOTA	L (m ⁻²)
SPECIE	Nº IND.	P. S. (g)	N⁰ IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g
HYLUM PORIFERA								
Clathrina coriacea	1	0,005					3	0,016
HYLUM CNIDARIA								
Plumularia setacea	2	0,001					7	0,002
Nemertesia antennina	1	0,001					3	0,003
Aglaophenia tubiformis	3	0,003					10	0,009
Epizoanthus incrustatus	13	0,163	5	0,120	7	0,175	143	3,004
HYLUM NEMERTEA								
Tubulanus polymorphus			1	0,001			8	0,007
Nemertea	3	0,002			1	0,003	18	0,034
HYLUM ANNELIDA								
Polynoidae	3	0,003					10	0,011
Sthenelais limicola	1	0,006					3	0,019
Psammolyce arenosa	1	0,013					3	0,044
Eulalia tripunctata	1	0,001					3	0,003
Pterocirrus limbatus	2	0,002					7	0,005
Nereimyra punctata	4	0,005					13	0,017
Autolytus prolifer					1	0,000	8	0,003
Syllis parapari	2	0,001					7	0,004
Syllis westheidei	1	0,001					3	0,002
Eusyllis assimilis					1	0,001	8	0,008
Brania arminii	1	0,000					3	0,000
Nephtys hombergii	6	0,038					20	0,127
Glycera lapidum	1	0,003			1	0,003	12	0,035
Glycinde nordmanni	1	0,001			1	0,006	12	0,052
Goniada maculata	1	0,003					3	0,008
Eunice vittata	4	0,022					13	0,072
Nematonereis unicornis	1	0,007					3	0,024
Abyssoninoe hibernica			1	0,003	4	0,011	42	0,117
Lumbrineris lusitanica	21	0,018	2	0,005	6	0,015	137	0,220
Protodorvillea kefersteini	1	0,001					3	0,003
Schistomeringos rudolphii					1	0,002	8	0,019
Aricidea catherinae	2	0,001			1	0,000	15	0,006
Aricidea claudiae					1	0,000	8	0,003
Aricidea suecica meridionalis	1	0,001					3	0,002
Aricidea sp.					1	0,000	8	0,003
Paradoneis ilvana	2	0,000	1	0,000			15	0,002
Laonice cirrata	2	0,002					7	0,005

ESTACIÓN C	;	a	1	b		c	TOTAL (m ⁻²)	
ESPECIE	N° IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)
Prionospio fallax	6	0,002					20	0,005
Prionospio sp.					1	0,000	8	0,001
Spiophanes kroyeri	2	0,002	1	0,001			15	0,010
Aonides oxycephala	1	0,007			2	0,012	20	0,121
Magelona alleni					1	0,003	8	0,022
Magelona minuta					1	0,000	8	0,002
Chaetozone gibber	1	0,001	1	0,001			12	0,014
Cirratulidae	1	0,000					3	0,000
Pherusa sp.	1	0,000					3	0,001
Armandia cirrhosa	2	0,000			1	0,000	15	0,004
Mediomastus fragilis	16	0,003	3	0,001	23	0,003	270	0,045
Praxillella sp.					1	0,001	8	0,004
Euclymene collaris	2	0,004			5	0,012	48	0,116
Euclymene oerstedi	4	0,008			1	0,005	22	0,065
Owenia fusiformis	1	0,009	3	0,011			28	0,125
Galathowenia oculata			1	0,000			8	0,001
Sabellaria spinulosa	31	0,062			20	0,020	270	0,369
Ampharete finmarchica	1	0,000	1	0,001	1	0,000	20	0,009
Lysippe labiata	1	0,001					3	0,004
Ampharetidae	1	0,000					3	0,000
Pista cristata	1	0,038			1	0,019	12	0,284
Polycirrus sp.	2	0,001			1	0,010	15	0,084
Pista lornensis	1	0,004					3	0,012
Paradialychone filicaudata	1	0,001			1	0,000	12	0,004
Chone sp.	2	0,000					7	0,001
Potamilla reniformis	1	0,001					3	0,004
Jasmineira caudata	1	0,001					3	0,003
Serpula vermicularis	1	0,019			1	0,003	12	0,091
Spirobranchus polytrema	1	0,000					3	0,001
Serpulidae	1	0,000					3	0,001
DIMIT THE A DESIGN OF CO.								
PHYLUM ARTHROPODA	6	0,002					20	0,006
Anthura gracilis	1	0,002	1	0,000			12	0,000
Gnathia sp.	1	0,000	1	0,000			3	0,001
Ampelisca pseudospinimana	1	0,001			1	0,000	8	0,002
Ampelisca typica					1	0,000	8	0,003
Ampelisca sp.	3	0,001			2	0,001	27	0,004
Megamphopus longicornis	2	0,001			∠	0,000	7	0,000
Maera grossimana	1	0,000					3	0,001

ESTACIÓN C		a		b		c	TOTA	L (m ⁻²)
ESPECIE	N° IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)
Ceradocus semiserratus					1	0,000	8	0,003
Maeridae	1	0,000					3	0,001
Unciola crenatipalma					1	0,000	8	0,001
Pseudoprotella phasma	1	0,000	1	0,000	14	0,001	128	0,012
Alpheus macrocheles	2	0,002					7	0,005
Pandalina brevirostris	1	0,003					3	0,008
Upogebia deltaura					1	0,001	8	0,006
Galathea intermedia	3	0,004			1	0,002	18	0,027
Anapagurus hyndmanni	9	0,002			2	0,000	47	0,010
Pisidia longicornis	2	0,003					7	0,010
Xantho incisus	1	0,002					3	0,005
Ebalia sp.	2	0,003					7	0,009
Parthenope massena	1	0,000					3	0,001
Endeis spinosa	1	0,001					3	0,003
PHYLUM MOLLUSCA								
Ocinebrina aciculata	3	1,883					10	6,276
Onchidorididae	1	0,164					3	0,545
Nucula sulcata	1	0,001					3	0,004
Striarca lactea	1	0,163					3	0,543
Gregariella barbatella	1	0,002					3	0,007
Ostreidae	1	0,190					3	0,632
Tellina sp.			1	0,001			8	0,007
Timoclea ovata			1	0,175			8	1,454
Hiatella arctica	4	0,005					13	0,016
PHYLUM SIPUNCULA								
Golfingia sp.					1	0,000	8	0,003
PHYLUM ENTOPROCTA								
Pedicellina cernua		0,003					0	0,010
PHYLUM BRYOZOA								
Lichenopora radiata	1	0,007			1	0,010	12	0,104
PHYLUM ECHINODERMATA								
Ophiocomina nigra					1	0,011	8	0,091
Amphipholis squamata	2	0,001			1	0,002	15	0,021
Amphiura filiformis					1	0,033	8	0,277
PHYLUM CHORDATA								
Tunicata	3	0,032					10	0,105

ESTACIÓN REF		a		b		c	TOTAL (m ⁻²)	
ESPECIE	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)
PHYLUM CNIDARIA								
Epizoanthus incrustatus	2	0,069	6	0,199	2	0,081	33	1,163
Edwardsia sp.	1	0,001					3	0,002
PHYLUM NEMERTEA								
Nemertea					11	0,005	37	0,016
PHYLUM ANNELIDA								
Eumida sp.					1	0,000	3	0,000
Nephtys hombergii	3	0,026			3	0,018	20	0,148
Glycera convoluta			1	0,005			3	0,015
Goniada maculata					1	0,003	3	0,008
Nothria conchylega					1	0,007	3	0,025
Aponuphis bilineata	1	0,003	1	0,001			7	0,016
Lumbrineris lusitanica			1	0,003			3	0,010
Scolaricia sp.	1	0,002					3	0,006
Aricidea cerrutii					1	0,000	3	0,001
Paradoneis ilvana			2	0,000			7	0,001
Spiophanes kroyeri			1	0,000	1	0,000	7	0,002
Magelona filiformis					2	0,001	7	0,002
Spiochaetopterus costarum	2	0,001			1	0,001	10	0,005
Chaetozone gibber	3	0,003	7	0,006	4	0,003	47	0,036
Armandia cirrhosa			1	0,000			3	0,001
Myriochele danielsseni			1	0,000	2	0,000	10	0,002
Galathowenia oculata	6	0,000			2	0,000	27	0,002
Ampharete finmarchica	3	0,002					10	0,008
PHYLUM ARTHROPODA								
Diastylis laevis					1	0,000	3	0,001
Eurydice truncata	1	0,001					3	0,003
Ampelisca brevicornis					1	0,002	3	0,005
Ampelisca tenuicornis					3	0,001	10	0,003
Hippomedon sp.	1	0,001			1	0,001	7	0,005
Harpinia antennaria	1	0,000			1	0,000	7	0,002
Harpinia pectinata			1	0,000			3	0,001
Anapagurus laevis					1	0,012	3	0,040
Pagurus alatus			1	0,014			3	0,045
Necallianassa truncata	1	0,000					3	0,001
Ebalia nux					1	0,060	3	0,200

IM13OSTREA Plan de Vigilancia de la instalación de OSTRA y MEJILLON

ESTACIÓN REF		a		b		с	TOTA	L (m ⁻²)
ESPECIE	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)	N° IND.	P. S. (g)	Nº IND.	P. S. (g)
PHYLUM MOLLUSCA								
Euspira pulchella			1	0,002	1	0,361	7	1,210
Bela nebula					1	0,009	3	0,029
Cylichna cylindracea			1	0,007			3	0,025
Nucula sulcata	1	0,009	2	0,013	1	0,016	13	0,124
Thyasira flexuosa	1	0,001	1	0,002			7	0,008
Spisula elliptica					1	0,003	3	0,011
Moerella donacina					1	0,045	3	0,149
Tellina serrata			1	0,001			3	0,002
Tellina compressa	6	0,060	8	0,081	7	0,015	70	0,520
Abra alba					1	0,134	3	0,446
Venus casina					1	0,002	3	0,006
Timoclea ovata	1	0,008	1	0,018			7	0,084
PHYLUM ECHINODERMATA								
Echinocardium cordatum					1	0,115	3	0,382

2.2 COMUNIDADES BENTÓNICAS DE SUSTRATO BLANDO

Listado de los datos brutos de abundancia (en densidad y biomasa) totales y para cada una de las tres réplicas.

ESTACIÓN A	:	a	1	b	1	c	TOTAL (m ⁻²)	
ESPECIE	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)
PHYLUM CNIDARIA								
Epizoanthus incrustatus			4	0,049			13	0,162
PHYLUM NEMERTEA								
Tubulanus polymorphus	1	0,001			1	0,001	7	0,004
Nemertea			1	0,001	1	0,001	7	0,006
PHYLUM ANNELIDA								
Phyllodoce lineata			1	0,001			3	0,004
Eteone sp.	1	0,002					3	0,007
Nephtys hombergii	1	0,020	1	0,004	2	0,021	13	0,151
Glycera alba	2	0,016					7	0,054
Glycera sp.			1	0,001	1	0,003	7	0,012
Glycinde nordmanni					1	0,003	3	0,011
Goniada maculata					1	0,001	3	0,004
Aponuphis bilineata	2	0,025			3	0,017	17	0,140
Abyssoninoe hibernica	1	0,004					3	0,014
Lumbrineris lusitanica	4	0,013	4	0,009	3	0,014	37	0,118
Aricidea catherinae	2	0,001			1	0,000	10	0,003
Paradoneis ilvana	2	0,000	1	0,000			10	0,001
Apistobranchus tullbergi	1	0,000	3	0,001	4	0,001	27	0,005
Polydora sp.			1	0,000			3	0,001
Spiophanes bombyx	3	0,004	1	0,001			13	0,016
Spiophanes kroyeri			1	0,001			3	0,003
Magelona minuta					1	0,000	3	0,001
Spiochaetopterus costarum					1	0,001	3	0,004
Monticellina dorsobranchialis	2	0,001					7	0,002
Chaetozone gibber	1	0,001	2	0,004	1	0,002	13	0,023
Diplocirrus glaucus	1	0,001					3	0,003
Flabelligeridae	1	0,000					3	0,001
Praxillella sp.					2	0,000	7	0,001
Euclymene oerstedi			1	0,003			3	0,009
Microclymene tricirrata	1	0,002					3	0,005
Myriochele danielsseni	5	0,001			5	0,001	33	0,004
Galathowenia oculata	4	0,001	7	0,001	7	0,000	60	0,005
Ampharete finmarchica	3	0,001	1	0,000	2	0,001	20	0,008
PHYLUM ARTHROPODA								
Nebalia troncosoi			1	0,000			3	0,001
Eudorella truncatula	1	0,000		•			3	0,000

ESTACIÓN A	:	a	1	b		c	TOTA	L (m ⁻²)
ESPECIE	Nº IND.	P. S. (g)						
Gastrosaccus lobatus			4	0,003			13	0,010
Ampelisca brevicornis	3	0,002			1	0,001	13	0,010
Ampelisca pectenata			1	0,001			3	0,002
Ampelisca sarsi	1	0,000			1	0,001	7	0,004
Ampelisca tenuicornis	3	0,001	6	0,001	1	0,000	33	0,007
Ampelisca typica	2	0,000			2	0,003	13	0,012
Hippomedon sp.	1	0,001	2	0,001	1	0,000	13	0,008
Harpinia antennaria	1	0,000	1	0,000	3	0,001	17	0,005
Urothoe elegans			1	0,000			3	0,001
Perioculodes longimanus			2	0,001			7	0,002
Westwoodilla rectirostris	1	0,000					3	0,000
Atylus vedlomensis	1	0,000					3	0,001
Jassa marmorata	12	0,001	4	0,001	1	0,001	57	0,006
Cheirocratus sp.	1	0,000					3	0,000
Phtisica marina					1	0,000	3	0,000
Processa sp.	1	0,001					3	0,002
Anapagurus laevis	1	0,000			1	0,025	7	0,083
Ebalia nux	1	0,020					3	0,068
Anoplodactylus petiolatus	1	0,000			1	0,000	7	0,002
PHYLUM MOLLUSCA								
Odostomia sp.			1	0,002			3	0,007
Eulimella ventricosa					2	0,004	7	0,014
Cylichna cylindracea	1	0,007			2	0,013	10	0,067
Nucula sulcata	2	0,146			3	0,108	17	0,847
Mytilus sp.	2	0,035	1	0,029			10	0,212
Atrina fragilis					1	0,068	3	0,226
Thyasira flexuosa	11	0,004	3	0,001	4	0,001	60	0,021
Tellina compressa	5	0,018	4	0,009	4	0,091	43	0,393
Moerella donacina			2	0,014	1	0,001	10	0,050
Tellina serrata	2	0,003					7	0,010
Abra alba	1	0,010					3	0,032
Venus casina					2	0,025	7	0,083
Dosinia lupinus			2	0,007	1	0,009	10	0,054
Timoclea ovata	2	0,055	1	0,083			10	0,459
Pandora pinna			1	0,073			3	0,244
PHYLUM SIPUNCULA								
Phascolion strombus	1	0,009	2	0,005			10	0,044

PHYLUM ECHINODERMATA

${\rm IM13OSTREA}$ Plan de Vigilancia de la instalación de OSTRA y MEJILLON

ESTACIÓN A	:	a		b		c		L (m ⁻²)
ESPECIE	Nº IND.	P. S. (g)						
Ophiura ophiura					3	0,090	10	0,299

 ${\rm IM13OSTREA}$ Plan de Vigilancia de la instalación de OSTRA y MEJILLON

ESTACIÓN C		a		b		c	TOTA	L (m ⁻²)
ESPECIE	Nº IND.	P. S. (g)	N° IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)
PHYLUM CNIDARIA								
Epizoanthus incrustatus			9	0,145			75	1,204
PHYLUM PLATYHELMINTHES	1	0,002					8	0,013
Platyhelminthes		0,002						0,013
PHYLUM NEMERTEA								
Nemertea			1	0,001			8	0,006
PHYLUM ANNELIDA								
Malmgrenia andreapolis			1	0,003			8	0,023
Sthenelais limicola	1	0,004					8	0,031
Autolytus sp.			1	0,000			8	0,001
Nephtys cirrosa			1	0,002			8	0,020
Glycera alba			1	0,006			8	0,052
Glycera sp.			1	0,002			8	0,019
Glycinde nordmanni	1	0,001	1	0,004	2	0,006	33	0,088
Goniada maculata			1	0,001	1	0,001	17	0,018
Aponuphis bilineata	1	0,008			2	0,003	25	0,098
Aponuphis fauveli					1	0,005	8	0,044
Lumbrineris lusitanica	2	0,012	9	0,029	2	0,011	108	0,434
Aricidea pseudoarticulata					1	0,000	8	0,002
Aricidea catherinae	5	0,002	4	0,001			75	0,025
Aricidea claudiae			1	0,001			8	0,004
Aricidea sp.			1	0,000			8	0,002
Levinsenia gracilis			1	0,000			8	0,002
Paradoneis ilvana			4	0,000			33	0,003
Apistobranchus tullbergi	1	0,000			2	0,001	25	0,008
Laonice cirrata					1	0,001	8	0,008
Prionospio fallax	1	0,000	1	0,000			17	0,005
Spiophanes bombyx	5	0,005	1	0,001			50	0,048
Spiophanes kroyeri			1	0,004			8	0,029
Aonides oxycephala			1	0,002			8	0,018
Magelona alleni			1	0,004	1	0,008	17	0,101
Magelona filiformis	4	0,001					33	0,009
Poecilochaetus serpens					1	0,001	8	0,009
Spiochaetopterus costarum			2	0,003			17	0,023
Monticellina sp.			2	0,000			17	0,001
Chaetozone gibber	3	0,007			4	0,007	58	0,120
Pherusa sp.			1	0,005			8	0,040
Diplocirrus glaucus			1	0,001	1	0,001	17	0,022

ESTACIÓN C		a	1	b	_	c	TOTAL (m ⁻²)	
ESPECIE	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)
Scalibregma inflatum			3	0,017			25	0,140
Notomastus latericeus			2	0,038			17	0,314
Mediomastus fragilis			19	0,003	1	0,000	167	0,026
Maldanidae			1	0,003			8	0,028
Maldane glebifex			1	0,001			8	0,009
Euclymene sp.			1	0,002			8	0,015
Euclymene collaris			3	0,011			25	0,095
Euclymene oerstedi			4	0,017			33	0,143
Owenia fusiformis			2	0,005			17	0,043
Myriochele danielsseni					3	0,000	25	0,003
Galathowenia oculata	6	0,000	2	0,000			67	0,005
Sabellaria spinulosa			9	0,018			75	0,151
Pectinaria auricoma					1	0,005	8	0,040
Ampharete finmarchica	1	0,001	9	0,000			83	0,011
Lysippe labiata			1	0,002			8	0,016
Ampharetidae			1	0,004			8	0,036
Pista cristata			4	0,029			33	0,239
Polycirrus sp.			1	0,000			8	0,003
Terebellidae			1	0,004			8	0,035
Terebellides stroemii			2	0,016			17	0,136
PHYLUM ARTHROPODA Leptognathiidae			3	0,000			25	0,002
Ampelisca brevicornis				,	1	0,000	8	0,003
Ampelisca tenuicornis			2	0,000			17	0,003
Ampelisca sarsi	1	0,000		ŕ			8	0,003
Hippomedon sp.					1	0,001	8	0,008
Harpinia antennaria					1	0,000	8	0,003
Autonoe spiniventris					2	0,001	17	0,005
Jassa marmorata					1	0,000	8	0,003
Necallianassa truncata	2	0,001			4	0,004	50	0,034
Galathea intermedia			2	0,004			17	0,030
Cestopagurus timidus			2	0,001			17	0,004
Pisidia longicornis			1	0,001			8	0,007
Eurynome spinosa			1	0,004			8	0,031
Pisa nodipes			1	0,016			8	0,130
Xantho incisus			1	0,069			8	0,578
PHYLUM MOLLUSCA					1	0.025	o	0.212
Bela nebula	1	0.066	2	0.000	1	0,025	8	0,212
Nucula sulcata	1	0,066	3	0,009			33	0,630

IM13OSTREA Plan de Vigilancia de la instalación de OSTRA y MEJILLON

ESTACIÓN C	:	a]	b	c			L (m ⁻²)
ESPECIE	Nº IND.	P. S. (g)						
Thyasira flexuosa	5	0,003			2	0,014	58	0,138
Tellimya ferruginosa			3	0,024			25	0,201
Tellina compressa	2	0,062			2	0,158	33	1,832
Tellina tenuis					1	0,001	8	0,009
Timoclea ovata	1	0,012					8	0,096
PHYLUM ECHINODERMATA								
Amphipholis squamata			3	0,004			25	0,034

ESTACIÓN REF ESPECIE	:	b		c		TOTAL (m ⁻²)		
	Nº IND.	P. S. (g)	N° IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)
PHYLUM CNIDARIA								
Clytia gracilis						0,001		0,002
Cavernularia pusilla	1	0,033					3	0,110
Epizoanthus incrustatus	9	0,069	4	0,035	2	0,022	50	0,422
PHYLUM NEMERTEA								
Tubulanus polymorphus	1	0,001	2	0,001	1	0,001	13	0,010
PHYLUM ANNELIDA								
Sigalion mathildae	1	0,001					3	0,005
Paranaitis kosteriensis			1	0,004			3	0,012
Syllis parapari	1	0,001					3	0,003
Exogone hebes					1	0,000	3	0,001
Odontosyllis sp.					1	0,001	3	0,002
Nephtys hombergii	3	0,038	1	0,019	1	0,016	17	0,242
Glycera alba			3	0,024			10	0,080
Goniada maculata					1	0,001	3	0,005
Aponuphis bilineata	1	0,017	1	0,001			7	0,062
Aponuphis fauveli					1	0,017	3	0,056
Abyssoninoe hibernica	1	0,004					3	0,013
Lumbrineris lusitanica	3	0,008			1	0,009	13	0,057
Notocirrus scoticus			1	0,004			3	0,014
Paradoneis ilvana					1	0,000	3	0,000
Apistobranchus tullbergi	2	0,001					7	0,002
Prionospio pulchra					1	0,000	3	0,001
Spiophanes bombyx			1	0,001	6	0,017	23	0,061
Spiophanes kroyeri					1	0,005	3	0,016
Malacoceros fuliginosus					1	0,003	3	0,011
Magelona alleni	1	0,001	1	0,002			7	0,011
Poecilochaetus serpens					1	0,001	3	0,002
Aphelochaeta sp.	1	0,001					3	0,005
Chaetozone gibber	4	0,007	2	0,003	9	0,019	50	0,100
Pherusa sp.					1	0,005	3	0,017
Capitella capitata	1	0,000					3	0,001
Mediomastus fragilis			1	0,000			3	0,000
Maldanidae					1	0,000	3	0,001
Owenia fusiformis	1	0,001					3	0,004
Myriochele danielsseni	1	0,000	2	0,000	1	0,000	13	0,002
Galathowenia oculata	3	0,001	3	0,000	3	0,000	30	0,004
Pectinaria auricoma	1	0,007					3	0,023

ESTACIÓN REF ESPECIE	a		b		c		TOTAL (m ⁻²)	
	N° IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)	Nº IND.	P. S. (g)
Ampharete finmarchica	1	0,001	5	0,003	5	0,002	37	0,017
PHYLUM ARTHROPODA								
Copepoda			1	0,000			3	0,001
Nebalia troncosoi	2	0,001					7	0,002
Leptognathiidae					1	0,000	3	0,000
Haplostylus normani			1	0,001			3	0,003
Ampelisca brevicornis			1	0,002	3	0,001	13	0,010
Ampelisca sarsi	4	0,001	1	0,000	1	0,000	20	0,003
Ampelisca tenuicornis					1	0,000	3	0,000
Leucothoe spinicarpa			1	0,000			3	0,001
Harpinia antennaria	2	0,000	2	0,001	2	0,001	20	0,004
Perioculodes longimanus	1	0,000	1	0,000	1	0,000	10	0,002
Atylus vedlomensis	1	0,001					3	0,004
Jassa marmorata	1	0,000	1	0,000			7	0,001
Ebalia nux	1	0,012			1	0,100	7	0,375
Pagurus cuanensis					1	0,024	3	0,081
Anoplodactylus petiolatus			1	0,000			3	0,001
PHYLUM MOLLUSCA								
Euspira pulchella			1	0,304			3	1,013
Cylichna cylindracea			1	0,005	5	0,003	20	0,028
Nucula sulcata	2	0,001			2	0,071	13	0,239
Thyasira flexuosa	3	0,002	15	0,006	7	0,028	83	0,118
Acanthocardia aculeata			1	0,163			3	0,542
Tellina compressa	4	0,013	6	0,015	5	0,012	50	0,129
Tellina serrata					1	0,001	3	0,003
Abra alba	1	0,009					3	0,031
Dosinia lupinus					1	0,007	3	0,024
Chamelea striatula	1	2,312					3	7,707
Venus casina	1	0,025					3	0,083
Timoclea ovata	3	0,027	1	0,006	1	0,009	17	0,138
Corbula gibba	2	0,063					7	0,211
PHYLUM SIPUNCULA								
Phascolion strombus	1	0,015					3	0,049
PHYLUM ECHINODERMATA								_
Echinocardium cordatum			3	0,263			10	0,878