Batxilergoko Sari Berezia 2014/2015Premio Extraordinariode Bachillerato

EZ SINATU ETA EZ JARRI IZENA / NO FIRMES NI PONGAS TU NOMBRE

KALIFIKAZIOA / CALIFICACIÓN			

KIMIKA

QUÍMICA

Baloratzeko irizpide orokorrak	Criterios generales de valoración			
Baloratuko dira erantzun zuzenak, azalpenaren argitasuna eta kalitatea, testuaren egituraketa, lexikoaren aberastasuna eta zuzentasun linguistikoa.	Se valorará la corrección de las respuestas, la claridad y calidad de la exposición, la estructuración, la propiedad del vocabulario y la corrección lingüística.			

Baloratzeko irizpide espezifikoak

Lengoaia kimikoaren erabilera zuzenarekin batera, erantzuna justifikatuta eta arrazoituta egotea balioetsiko da.

Baldintza hauek eskatuko dira ariketa edota problema batean gehienezko puntuazioa lortzeko:

- planteamendu eta garapen egokia
- emaitza zuzena (unitate egokiekin emanda)

Era berean, atal hauek balioetsiko dira:

- aurkezpena eta irakurgarritasuna
- zientzia arloko zuzentasuna
- kontzeptuen zehaztasuna
- erantzunen argitasuna eta koherentzia
- sintesi-ahalmena
- eskema eta marrazki osagarriak egitea
- unitateak egoki erabiltzea.

Criterios específicos de valoración

Se valorará que la respuesta esté debidamente justificada y razonada, así como el uso correcto del lenguaje químico.

Se obtendrá la máxima valoración de los ejercicios y problemas cuando estén adecuadamente planteados y desarrollados, tengan la solución correcta y se expresen los resultados con las unidades correspondientes.

Se valorará igualmente:

- la presentación y legibilidad,
- el rigor científico,
- la precisión de los conceptos,
- la claridad y coherencia de las respuestas,
- la capacidad de síntesis,
- el uso de esquemas y dibujos complementarios
- la correcta utilización de unidades.

Proba egiteko xehetasunak	Específicaciones para la realización de ejercicio
Azterketak hiru ariketa ditu. Ariketa bakoitzak	Esta prueba consta de 3 ejercicios. Cada ejercicio
dagokion puntuazioa darama.	lleva su puntuación correspondiente.
Ebaspena modu ordenatuan idatzi behar duzu.	Escribe la resolución de forma ordenada.

1. ariketa (3 puntu)

Konposatu baten osagaiak C-a, H-a, O-a eta Cu-a dira soilik. C-aren eta H-aren edukia errekuntzaren bidez analizatzen da. Dagoen Cu-a ioduroarekin erreakzionaraziz lortzen da, ondoko erreakzioaren arabera:

(1)
$$2 \text{ Cu}^{2+}$$
 (aq) + 5 I^{-} (aq) \longrightarrow 2Cul (s) + I_{3}^{-} (aq)

eta l⁻₃-a tiosulfatoarekin erreakzionaraziz ondokoaren arabera:

(2)
$$I_3^-(aq) + 2 S_2 O_3^{2-}(aq) \longrightarrow 3 I^-(aq) + S_4 O_6^{2-}(aq)$$

- a. Konposatuaren 0,250 g-ko laginaren errekuntzan 0,504 g CO₂ eta 0,0743 g H₂O sortzen dira. Konposatuan karbonoaren eta hidrogenoaren masa-portzentajea determinatu.
- b. Cu^{2+} -aren analisian, konposatuaren 0,115 g-ko lagina azido nitriko kontzentratuarekin erreakzionarazten da, lehortasuna lortu arte lurrundu zela, eta hondakina H_2 Otan disolbatu zen. Ondoriozko disoluzioaren Cu^{2+} -a I^- -aren soberarekin erreakzionarazten da, lortzen den I_3 -a $S_2O_3^{2-}$ tiosulfatotan 0,032M den disoluzioarekin baloratzen da, 11.75 mL behar direlarik. Cu^{2+} -aren mol-kopurua determinatu eta koposatuan dagoen Cu-aren masaportzentajea kalkulatu.
- c. Oxigenoaren masa-portzentajea kalkulatu eta konposatuaren formula enpirikoa idatzi.

1^{er} ejercicio (3 puntos)

Un compuesto contiene solamente C, H, O y Cu. El contenido de C e H se analiza por combustión. El Cu contenido se obtiene por reacción con yoduro según la siguiente reacción:

(1)
$$2 \text{ Cu}^{2+}(aq) + 5 \text{ I}^{-}(aq) \longrightarrow 2 \text{ Cul (s)} + \text{I}_{3}^{-}(aq)$$

y haciendo reaccionar el l₃ con tiosulfato de acuerdo a la siguiente reacción:

(2)
$$I_3^-(aq) + 2 S_2 O_3^{2-(aq)} \longrightarrow 3 I^-(aq) + S_4 O_6^{2-(aq)}$$

- a. La combustión de una muestra de 0,250~g del compuesto produce 0,504~g de $CO_2~y$ 0,0743~g de H_2O . Determinar el porcentaje en masa de carbono e hidrógeno en el compuesto.
- b. En el análisis de Cu^{2+} , una muestra de 0,115 g del compuesto se hace reaccionar con ácido nítrico concentrado, se evaporó hasta sequedad y el residuo se disolvió en H_2O . El Cu^{2+} en la solución resultante se hace reaccionar con un exceso de I^- y el I_3^- que se obtiene se valora con tiosulfato $S_2O_3^{2-}$ 0,032M, necesitándose 11,75 mL. Determinar los moles de Cu^{2+} y calcular el porcentaje en masa de Cu en el compuesto.
- c. Calcular el porcentaje en masa de oxígeno y escribir la fórmula empírica del compuesto.

2. ariketa(4 puntu)

2º ejercicio (4 puntos)

Ondoren, bentzeno likido eta gaseosoaren zenbait propietate termodinamiko ematen dira.

A continuación se dan algunas propiedades termodinámicas del benceno líquido y gaseoso:

	ΔH_f KJ/mol	S° J· mol ⁻¹ K ⁻¹	ΔH errekuntza- combustión KJ/mol	
C ₆ H ₆ (I)	48,7	173,3	-3273	
C ₆ H ₆ (g)	82,9	269,0	-3302	

a. Bentzenoaren lurrun-presioa 25°C-an eta mm Hg-tan kalkula ezazu, ondoko formula erabiliz:

$$\Delta G^{0}_{I-g}$$
= -R T Ln K

b. Erreakzio honentzat: $C_6H_6(I) \rightarrow 6C(s)+3H_2(g)$

1,50 g C₆H₆aren entalpia aldaketa kalkulatu.

- c. Mol bat bentzenoaren errekuntza osoarentzat ekuazio doitua idatzi.
- d. Ondoko laukian dauden lotura-energiak erabiliz, bentzenoan karbono-karbono loturen balioztatutako lotura-energiak kalkulatu.

a. Calcular la presión de vapor de benceno en mm Hg a 25°C, utilizando la siguiente ecuación:

$$\Delta G^0_{l-q}$$
= -R T Ln K

b. Calcular la variación de entalpía asociada con la reacción siguiente:

 $C_6H_6(I) \rightarrow 6C(s) + 3H_2(g)$ para 1,50g de C_6H_6 .

- c. Escribir la ecuación ajustada para la combustión completa de un mol de benceno.
- d. Utilizando las energías de enlace expresadas en el cuadro siguiente, calcular la energía de enlace estimado de los enlaces carbonocarbono en el benceno.

Lotura / Enlace	C–H	C–O	C= O	C≣O	H–O	0–0	O= O
Energia kJ/mol	414	351	799	1070	464	142	498

3. ariketa(3,0 puntu)

Esnearen kalitatearen (freskotasuna) parametroa bat azido laktikoaren (az. 2-hidroxipropanoikoa, K_a = 1,4. 10^{-4}) kontzentrazioa da, Dornic gradutan (1^0 D = 1 mg az. laktikoa/10mL esnea) adierazita. Esne freskoaren tartea 14^0 D-tik 17^0 D-ra bada, tarte hau handiagotzen den heinean esnearen kalitatea gutxiagotzen delarik, adibidez, azidoaren kontzentrazioa 5g/L baino handiagoa denean esnea mamitzen da.

Esne baten pH-a neurtu egin da bere balioa 3,30 izanik. Dagozkien konposatuak eta erreakzioak formulatuz eta idatziz, erantzun:

- a. Esne freskoa da?
- b. Zein pH-tatik aurrera esnea mamitzen hasiko da?
- c. Esne horren 20mL sodio hidroxidoaren disoluzio batekin baloratzen badugu, eta disoluzio honen 9,5 mL behar badira, zein da basearen kontzentrazioa?

3er ejercicio (3,0 puntos)

Un parámetro de la calidad (frescura) de la leche es la concentración del ácido láctico (ac. 2-hidroxipropanoico, K_a = 1,4. 10^{-4}), expresado en grados Dornic (1^0 D = 1 mg ác. láctico/10mL leche). Si el intervalo de leche fresca es de 14^0 D a 17^0 D, a medida que el intervalo aumenta la calidad de la leche disminuye, por ejemplo, cuando la concentración del ácido es de 5g/L la leche se cuaja.

Se mide el pH de una leche siendo de 3,30. Formulando y escribiendo los compuestos y reacciones correspondientes, contesta:

- a. ¿Es una leche fresca?
- b. ¿A partir de qué pH se empezará a cuajar la leche?
- c. Si valoramos 20mL de esa leche con una disolución de hidróxido sódico y si se necesitan 9,5 mL de esta disolución, ¿cuál es la concentración de la base?

Datuak/Datos

Masa atomikoak /Masas atómicas: H=1,008; C=12,01; O=16,00; Cu=63,54

 $R = 8,314 \text{ J/mol} = 0,082 \text{ atm. L/mol}^{0} \text{K}$ 1 atm = 760 mm Hg