

Proyecto Constructivo de un depósito de trenes en Zumaia

Documento nº 1 Memoria y Anejos

Anejo nº 8. Climatología, Hidrología y Drenaje

Septiembre 2023

Índice

1.	Introducci	ón	5
2.	Climatolog	gía	6
2.1.	Introducc	ión	6
2.2.	Días apro	ovechables para la ejecución de las obras	6
	2.2.1.	Metodología	6
	2.2.2.	Días aprovechables	7
3.	Hidrología	1	11
3.1.	Introducc	ión	11
3.2.	Determin	ación de las cuencas	11
3.3.	Caudales	š	12
3.4.	Intensida	d de precipitación	13
3.5.	Tiempo d	le concentración	16
3.6.	Coeficien	te de escorrentía	17
3.7.	Coeficien	te de uniformidad en la distribución temporal de la precipitación	21
3.8.	Estimació	on de los caudales a desaguar	21
	3.8.1.	Período de retorno	21
	3.8.2.	Características de las cuencas drenadas	21
4.	Drenaje		22
4.1.	Criterios	de diseño	22
4.2.	Cálculos	hidráulicos	23
4.3.	Redes de	drenaje	23
	4.3.1.	Cunetas de guarda	23
	4.3.2.	Bajantes escalonadas de hormigón armado	23
4.4.	Drenaje s	subterráneo	24
	4.4.1.	Introducción	24
	4.4.2.	Situación actual	24
5.	Cubiertas		25
Apé	ndice Nº 1	Cálculo hidráulico	27
Apé	ndice Nº 2	Cálculo bajantes	31
Apé	ndice Nº 3	Cálculo cunetas de guarda	37
Apé	ndice Nº 4	Análisis climatológico. Series de precipitación	45

Apéndice Nº 5 Análisis climatológico. Series de temperaturas.	61
Apéndice Nº 6 Análisis climatológico. Series de diversos fenómenos meteorológicos	61
Índice de figuras	
Figura 1.Pm y Cv en la zona de Proyecto. "Máximas Lluvias Diarias en la España Peninsular" (1999)	13
Figura 2 Índice de torrencialidad I ₁ /I _d (Norma 5.2 – IC Drenaje Superficial, 2016)	16
Figura 3. Grupos hidrológicos de suelo, Norma 5.2 - IC de la Instrucción de Carreteras (2016)	18
Figura 4. Regiones para el coeficiente corrector de P0, Norma 5.2 - IC (2016)	19
Figura 5. CTE. Mapa de isoyetas y zonas pluviométricas.	25
Índice de tablas	
Tabla 1. Estaciones meteorológicas	6
Tabla 2. Valores climáticos condicionantes y coeficientes reductores	8
Tabla 3. Coeficiente de reducción por días útiles	9
Tabla 4. Coeficiente de reducción por días festivos	9
Tabla 5. Coeficiente de reducción totales	10
Tabla 6. Días útiles de obra	10
Tabla 7. Cuencas y subcuencas drenantes	12
Tabla 8. Precipitaciones máximas diarias	13
Tabla 9. Cuantiles regionales resultantes según Cv y el periodo de retorno	14
Tabla 10. Factores de corrección para el umbral de escorrentía.	20
Tabla 11. Factores de corrección para el umbral de escorrentía.	20
Tabla 12. Características de las cuencas drenadas	22
Tabla 13. Cálculos hidráulicos red de drenaio	23

Anejo n°8. Climatología, Hidrología y Drenaje

1. Introducción

El presente anejo tiene por objeto definir los aspectos hidrológicos y el sistema de drenaje del Proyecto Constructivo de modernización y mejora de las Instalaciones y reforma de la Estación de Zumaia.

En este contexto general, los estudios que se desarrollan a continuación están destinados a proporcionar la información para la definición de los parámetros básicos de diseño del drenaje de la playa de vías y nave de cocheras proyectada junto a la actual estación de Zumaia.

Se ha realizado un estudio del sistema de drenaje existente y han de proyectarse nuevas obras para recoger las aguas con la nueva ordenación y conectarlas en los puntos de conexión existentes.

En lo que sigue se describen las actividades y análisis que se han desarrollado, habiéndose agrupado éstas en dos apartados según el objetivo al que están destinadas:

- Estudio hidrológico. En realidad, se trata de un estudio de crecidas extremas por lo que los datos que interesan se refieren a valores máximos de la precipitación, que incluyen de los relacionados con los procesos que gobiernan el proceso precipitación - escorrentía, tales como infiltración, retención, etc.
- **Estudio del drenaje**. Se ha estudiado la red el drenaje existente, con los niveles de seguridad adoptados por la instrucción de drenaje superficial de carreteras 5.2-1.C.

Se lleva a cabo la definición de las obras de drenaje y evacuación de las aguas superficiales hacia las obras existentes cercanas, resolviendo la interferencia del drenaje natural con las infraestructuras proyectadas, asegurando la prestación de servicio al usuario.

En los cálculos y diseño se han considerado los criterios establecidos en las Normas Técnicas para carreteras; Instrucción de carreteras 5.2-IC "Drenaje superficial" del Ministerio de Fomento.

Los datos necesarios para la obtención de la lluvia de diseño se han determinado de la monografía "Máximas lluvias diarias en la España peninsular", del ministerio de Fomento.

2. Climatología

2.1. Introducción

El objetivo fundamental de los estudios y análisis que se desarrollan a continuación es caracterizar el ámbito territorial desde el punto de vista climático a fin de aportar información necesaria para poder definir el Plan de las Obras.

Cabe señalar que para la redacción del apartado "Días aprovechables para la ejecución de las obras" se han utilizado los datos de la estación de "San Sebastián (Igueldo)", ya que era la estación más próxima al ámbito del proyecto que presentaba los datos necesarios para redactar el mencionado apartado. También se ha utilizado esta estación para la realización del apéndice que recoge "series de diversos fenómenos meteorológicos".

E	ESTACIÓN	Longitud	Latitud	Altitud	Altitud Provincia		AÑOS CON Periodo DATOS Fun.		Serie completa	
Código	Denominación					run.	Compl.	Incompl.	más larga	
1024E	San Sebastián (Igueldo)	20° 22' 22'' W	43° 18' 27''N	252	Gipuzkoa	1916- 2009	81	1	1928-2009	

Tabla 1. Estaciones meteorológicas

También cabe precisar que, aunque las series de datos de estas estaciones son de suficiente continuidad, varios años no están completos. En cualquier caso, el cálculo de los valores característicos mensuales de los diversos factores climáticos se ha realizado a partir de la totalidad de los datos disponibles de cada mes, mientras que los valores anuales se han obtenido a partir de los valores mensuales resultantes.

2.2. Días aprovechables para la ejecución de las obras

2.2.1. Metodología

La determinación de los días aprovechables para ejecutar las unidades y tipos de obra más significativos del proyecto se realiza a continuación siguiendo el procedimiento propuesto en la publicación Datos climáticos para carreteras, editada por la Dirección General de Carreteras.

A fin de facilitar la exposición y justificación del método, se incluyen seguidamente las definiciones básicas, citadas de la mencionada publicación:

- Día aprovechable. Para cada clase de obra se entiende por día aprovechable, en cuanto a clima se refiere, el día en que la precipitación y la temperatura del ambiente son inferior y superior, respectivamente, a los límites que se definen más adelante.
- Temperatura límite del ambiente para la ejecución de unidades bituminosas, tales como riegos, tratamientos superficiales o por penetración, y mezclas bituminosas. Es aquélla que se acepta normalmente como límite por debajo del cual no pueden ponerse en obra dichas unidades. En este estudio se toma como temperatura límite de puesta en obra de riegos, tratamientos superficiales o por penetración, la de 10°C; y para mezclas bituminosas la de 5°C.
- Temperatura límite del ambiente para la manipulación de materiales naturales húmedos. Se adopta 0°C.

Precipitación límite. Se establecen dos valores de la precipitación límite diaria: 1 mm por día y 10 mm por día. El primer valor limita el trabajo en ciertas unidades sensibles a una pequeña lluvia; y el segundo valor limita el resto de los trabajos. Se entiende que, en general, con precipitación diaria superior a 10 mm no puede realizarse ningún trabajo sin protecciones especiales.

Para calcular el número de días aprovechables útiles en las distintas clases de obra se establecen unos coeficientes de reducción, que se aplican al número de días laborables de cada mes. Se trata de los siguientes:

 Coeficiente de reducción por helada (ηm). Cociente del número de días del mes en que la temperatura mínima es superior a 0°C, al número de días del mes.

$$\eta_m = \frac{\textit{N}^{\text{o}} \ \textit{de días del mes con temperatura mínima} > 0^{\text{o}} \, \textit{C}}{\textit{N}^{\text{o}} \ \textit{de días del mes}}$$

Coeficiente de reducción por temperatura límite de riegos, tratamientos superficiales o por penetración (τm). Cociente del número de días del mes en que la temperatura a las 9 de la mañana es igual o superior a 10°C, al número de días del mes.

$$\tau_{_{m}} = \frac{N^{\circ} \ de \ días \ del \ mes \ con \ temperatura \ a \ las \ 9 \ de \ la \ mañana \ge 10^{\circ} \ C}{N^{\circ} \ de \ días \ del \ mes}$$

 Coeficiente de reducción por temperatura límite de mezclas bituminosas (τ'm). Cociente del número de días del mes en que la temperatura a las 9 de la mañana es igual o superior a 5°C, al número de días del mes.

$$\tau'_m = \frac{N^o \text{ de días del mes con temperatura a las 9 de la mañana} \ge 5^{\circ} \text{C}}{N^o \text{ de días del mes}}$$

 Coeficiente de reducción por lluvia límite general de trabajos (λm). Cociente del número de días del mes en que la precipitación es inferior a 10 mm, al número de días del mes.

$$\lambda_{\scriptscriptstyle m} = \frac{N^{\rm o}~de~días~del~mes~con~precipitación < 10~mm}{N^{\rm o}~de~días~del~mes}$$

 Coeficiente de reducción por lluvia límite parcial de trabajos (λ'm). Cociente del número de días del mes en que la precipitación es inferior a 1 mm, al número de días del mes.

$$\lambda'_{m} = \frac{N^{\circ} de días del mes con precipitación < 1 mm}{N^{\circ} de días del mes}$$

2.2.2. <u>Días aprovechables</u>

Para el cálculo de los coeficientes antedichos se han utilizado los datos correspondientes a la estación seleccionada para el estudio climatológico.

Los valores que se han obtenido se recogen en los Apéndices; para los valores de la temperatura a las 9 de la mañana se han considerado los registrados a las 7 h del horario solar, que corresponde a las 9 h del horario oficial en verano y a las 8 h del horario oficial en invierno, y no se han tomado en consideración los meses en los que estas temperaturas no han sido medidas todos los días para no distorsionar los resultados.

Los valores medios resultantes para cada uno de los condicionantes climáticos a considerar y los coeficientes reductores correspondientes se exponen en la **Tabla 15**.

PARÁMETRO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	AÑO
Nº DÍAS Tmín>0°C	28,5	26,2	30,5	30,0	31,0	30,0	31,0	31,0	30,0	31,0	29,4	29,6	358,2
COEFICIENTE	0,92	0,94	0,98	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,98	0,96	0,98
COEFICIENTE _m	0,25	0,3	0,62	0,52	0,95	1	1	1	1	0,83	0,4	0,3	0,68
COEFICIENTE - 'm	0,7	0,72	0,88	0,9	1	1	1	1	1	1	0,92	0,81	0,91
Nº DÍAS P<10mm	25,8333	23,9	26,3667	25,1	27,0667	27,5	28,2667	27,7667	26,2	25,5667	24,0333	25,4	313
COEFICIENTE Dm	0,83	0,85	0,85	0,84	0,87	0,92	0,91	0,90	0,87	0,82	0,80	0,82	0,86
Nº DÍAS P<1mm	17,9	16,2	18,4	16,4667	18,9667	19,1333	21,2	20,4333	19,7667	18,9333	17,5	18,4667	223,367
COEFICIENTE - 'm	0,58	0,58	0,59	0,55	0,61	0,64	0,68	0,66	0,66	0,61	0,58	0,60	0,61

Tabla 2. Valores climáticos condicionantes y coeficientes reductores

Todos los datos recopilados de la estación de Igueldo. Coeficientes τm y $\tau' m$ sacados del documento Datos climáticos para carreteras, editada por la Dirección General de Carreteras.

A continuación se indican aquellos factores que se consideran limitantes para la ejecución de las unidades de obra más significativas del proyecto.

FACTORES LIMITANTES PARA LA EJECUCIÓN DE LAS OBRAS											
TIPO DE OBRA	T _{min} ≤ 0°C	T _{9h} < 5°C	T _{9h} < 10°C	P≥1 mm	P≥ 10 mm						
Explanaciones	SI	-	-	SI	SI						
Hormigones	SI	-	-	-	SI						
Producción de áridos	-	-	-	-	SI						
Riegos y tratamientos superficiales	-	SI	-	SI	-						
Mezclas bituminosas	-	-	SI	SI	-						

Como los condicionantes de tipo termométrico y pluviométrico cuentan con una probabilidad independiente de ocurrencia, en caso de producirse cualquiera de ellos debe suspenderse la ejecución de las obras, para aquellas unidades de obra en que concurren ambos se considera como coeficiente de reducción el producto de los coeficientes correspondientes a ambos factores. Por lo tanto, los coeficientes reductores a aplicar para las principales unidades de obra son los siguientes:

• Explanaciones: $CE = \eta m \cdot (\lambda m + \lambda' m)/2$

• Hormigones: $CH = \eta m \cdot \lambda m$

Producción de áridos: CA = λm

• Riegos y tratamientos superficiales: $CR = \tau m \cdot \lambda' m$

• Mezclas bituminosas: $CM = \tau' m \cdot \lambda' m$

Los valores resultantes para estos coeficientes de reducción en cada uno de los meses del año se exponen en la **Tabla 16**.

TIPO DE OBRA	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	AÑO
Explanaciones	0,647	0,670	0,711	0,692	0,742	0,777	0,798	0,777	0,766	0,718	0,679	0,677	0,721
Hormigones	0,765	0,799	0,837	0,836	0,873	0,917	0,912	0,896	0,873	0,825	0,786	0,784	0,842
Producción de áridos	0,833	0,854	0,851	0,837	0,873	0,917	0,912	0,896	0,873	0,825	0,801	0,819	0,858
Riegos y trata- mientos sup.	0,14	0,17	0,37	0,29	0,58	0,64	0,68	0,66	0,66	0,51	0,23	0,18	0,43
Mezclas bitumi- nosas	0,40	0,42	0,52	0,49	0,61	0,64	0,68	0,66	0,66	0,61	0,54	0,48	0,56

Tabla 3. Coeficiente de reducción por días útiles

Para el cálculo de los días en los que realmente se puede trabajar en cada mes intervienen dos factores de reducción:

Los días festivos; que son variables según el año y la localidad, pero cuya importancia es notable: su coeficiente de reducción puede establecerse en cada caso a la vista del calendario laboral. Así, teniendo en cuenta el calendario laboral del 2009 para la provincia de Gipuzkoa, y contando los sábados como no laborables, se puede considerar aproximadamente:

PARÁMETRO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	AÑO
Nº días laborales	19	20	21	19	20	22	22	21	22	21	21	21	249
Nº días festivos	12	8	10	11	11	8	9	10	8	10	9	10	116
Cf	0,613	0,714	0,677	0,633	0,645	0,733	0,710	0,677	0,733	0,677	0,700	0,677	0,682

Tabla 4. Coeficiente de reducción por días festivos

Los días de climatología adversa; cuyo coeficiente de reducción ya se ha calculado en el cuadro 16.

Como puede darse que los días festivos sean de climatología adversa, se admite el siguiente criterio de cálculo el coeficiente total de reducción: si para un mes determinado Cf representa el coeficiente de reducción de días festivos, y el Cm el coeficiente de reducción climatológico para una clase de obra determinada, (1-Cm) representa la probabilidad de que un día cualquiera del mes presente climatología adversa para dicha clase de obra; y (1-Cm) * Cf la probabilidad de que un día laborable presente una climatología adversa.

El coeficiente de reducción total será por tanto:

$$Ct = 1 - (1 - C_m) * C_f$$

TIPO DE OBRA	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	AÑO
Explanaciones	0,78	0,76	0,80	0,80	0,83	0,84	0,86	0,85	0,83	0,81	0,78	0,78	0,81
Hormigones	0,86	0,86	0,89	0,90	0,92	0,94	0,94	0,93	0,91	0,88	0,85	0,85	0,89
Producción de áridos	0,90	0,90	0,90	0,90	0,92	0,94	0,94	0,93	0,91	0,88	0,86	0,88	0,90
Riegos y tratamientos sup.	0,48	0,41	0,57	0,55	0,73	0,73	0,78	0,77	0,75	0,67	0,46	0,44	0,61
Mezclas bituminosas	0,63	0,58	0,68	0,68	0,75	0,73	0,78	0,77	0,75	0,74	0,68	0,65	0,70

Tabla 5. Coeficiente de reducción totales

Por lo tanto, el número de días previsiblemente aprovechables para cada uno de los tipos de actividades considerados serán los que se recogen en cuadro siguiente.

TIPO DE OBRA	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	AÑO
Explanaciones	15	15	17	15	17	18	19	18	18	17	16	16	202
Hormigones	16	17	19	17	18	21	21	20	20	19	18	18	222
Producción de áridos	17	18	19	17	18	21	21	20	20	19	18	18	225
Riegos y tratamientos sup.	9	8	12	10	15	16	17	16	16	14	10	9	151
Mezclas bituminosas	12	12	14	13	15	16	17	16	16	15	14	14	174

Tabla 6. Días útiles de obra

3. Hidrología

3.1. Introducción

El objeto de este apartado es el estudio de la hidrología de la zona objeto del proyecto. La información para la redacción de este Anejo se ha obtenido del informe de climatología previamente realizado. Se han calculado los caudales de escorrentía a partir de las máximas intensidades de lluvia previsibles en la zona para los periodos de retorno requeridos en cada caso, que se utilizarán para el futuro dimensionamiento de los elementos de recogida y evacuación, el drenaje y la restitución de la continuidad de los cauces naturales.

El estudio para determinar la hidrología se puede dividir en varias fases:

- Delimitar y determinar las superficies de las cuencas interceptadas por el nuevo trazado, así como las características físicas principales (pendientes, longitudes de recorrido y tiempos de concentración).
- Estudiar las características de infiltración y escorrentía de las diferentes cuencas.
- Determinar las precipitaciones máximas probables diarias asociadas a los diversos periodos de retorno considerados.
- Aplicación de las fórmulas de obtención de los caudales.

3.2. Determinación de las cuencas

Las superficies interceptadas por la traza de la plataforma que tienen una superficie vertiente significativa se han delimitado sobre cartografía a escala 1:500 y están reflejadas en el plano "cuencas". Una vez representadas las cuencas, se han deducido sus características físicas: superficie, longitud y cotas extremas y pendiente del curso principal.

Se han delimitado cuencas con las siguientes características:

- Ladera sur que desagua hacia la plataforma ferroviaria. El flujo se canaliza a través de una cuneta de guarda dispuestas en la coronación del desmonte y es recogida en tres bajantes hacia la red de drenaje.
- Urbanización y cubiertas de las nuevas instalaciones ferroviarias. Superficie de pequeña dimensión recogiéndose las aguas en la nueva red de drenaje compuesta por sumideros y arquetas intermedias de conexión.

Se adjunta una tabla con las características de las cuencas exteriores:

Cuenca	Superficie	Со	tas	Desnivel	Longitud	Pendiente
	m²	max	min	m	km	m/m
C-01	6.013	44,00	20,97	23,03	0,210	0,110
C-02	13.072	44,00	17,20	26,80	0,215	0,125

Cuenca	Superficie	Co	tas	Desnivel	Longitud	Pendiente
	m²	max	min	m	km	m/m
C-03	5.421	44,00	10,60	33,40	0,260	0,128

Tabla 7. Cuencas y subcuencas drenantes

También se han considerado las cuencas correspondientes a la nueva ordenación:

- Taludes.
- Urbanización.
- Cubiertas.

3.3. Caudales

Para las cuencas de estudio se aplica por tanto el método racional descrito en la Norma 5.2 IC de drenaje superficial, con el que se determinan los caudales de diseño de los elementos de drenaje a partir de un caudal máximo QT, correspondiente a un período de retorno T, calculado mediante la fórmula:

$$Q_T = \frac{I(T, t_c) \cdot C \cdot A \cdot K_t}{3.6}$$

donde:

- QT en m³/s: Caudal máximo anual correspondiente al período de retorno T, en el punto de desagüe de la cuenca.
- I (T, tc) en mm/h: Intensidad de precipitación correspondiente al período de retorno considerado T, para una duración del aguacero igual al tiempo de concentración tc, de la cuenca.
- C (adimensional): Coeficiente medio de escorrentía de la cuenca o superficie considerada.
- A en km²: Área de la cuenca es la superficie medida en proyección horizontal que drena al punto de desagüe. Se considera que todas las cuencas delimitadas son homogéneas, de modo que en cada una de ellas puede adoptarse un valor único de la intensidad de precipitación y del coeficiente de escorrentía.
- Kt (adimensional): Coeficiente de uniformidad en la distribución temporal de la precipitación.
- En los puntos siguientes se describe la obtención de cada uno de los términos de la formulación del método racional, así como de los caudales resultantes de diseño.

En los puntos siguientes se describe la obtención de cada uno de los términos de la formulación del método racional, así como de los caudales resultantes de diseño.

3.4. Intensidad de precipitación

Para calcular la precipitación en las cuencas del proyecto se utilizará el documento de "Máximas Lluvias Diarias en la España Peninsular" (Dirección General de Carreteras. 1999). La zona de proyecto se muestra en la siguiente imagen.

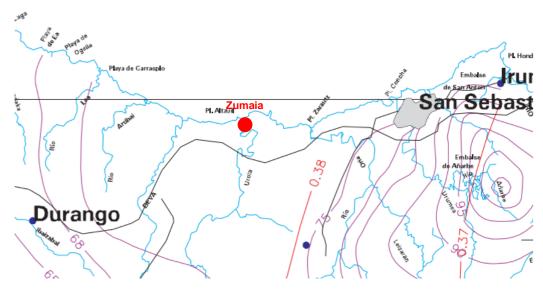


Figura 1.Pm y Cv en la zona de Proyecto. "Máximas Lluvias Diarias en la España Peninsular" (1999)

En la zona de proyecto (área marcada en rojo en imagen anterior) se encuentran los siguientes valores:

■ Pm: 73 mm/día

■ Cv: 0.38

Con estos valores se obtienen los siguientes valores para diferentes periodos de retorno.

Periodo	Cuantil regional	P máx
10 años	1,469	107 mm/día
25 años	1,793	131 mm/día
100 años	2,052	150 mm/día

Tabla 8. Precipitaciones máximas diarias

	PERIODO DE RETORNO EN AÑOS (T)												
C _v	2	5	10	25	50	100	200	500					
0.30	0.935	1.194	1.377	1.625	1.823	2.022	2.251	2.541					
0.31	0.932	1.198	1.385	1.640	1.854	2.068	2.296	2.602					
0.32	0.929	1.202	1.400	1.671	1.884	2.098	2.342	2.663					
0.33	0.927	1.209	1.415	1.686	1.915	2.144	2.388	2.724					
0.34	0.924	1.213	1.423	1.717	1.930	2.174	2.434	2.785					
0.35	0.921	1.217	1.438	1.732	1.961	2.220	2.480	2.831					
0.36	0.919	1.225	1.446	1.747	1.991	2.251	2.525	2.892					
0.37	0.917	1.232	1.461	1.778	2.022	2.281	2.571	2.953					
0.38	0.914	1.240	1.469	1.793	2.052	2.327	2.617	3.014					
0.39	0.912	1.243	1.484	1.808	2.083	2.357	2.663	3.067					
0.40	0.909	1.247	1.492	1.839	2.113	2.403	2.708	3.128					
0.41	0.906	1.255	1.507	1.854	2.144	2.434	2.754	3.189					
0.42	0.904	1.259	1.514	1.884	2.174	2.480	2.800	3.250					
0.43	0.901	1.263	1.534	1.900	2.205	2.510	2.846	3.311					
0.44	0.898	1.270	1.541	1.915	2.220	2.556	2.892	3.372					
0.45	0.896	1.274	1.549	1.945	2.251	2.586	2.937	3.433					
0.46	0.894	1.278	1.564	1.961	2.281	2.632	2.983	3.494					
0.47	0.892	1.286	1.579	1.991	2.312	2.663	3.044	3.555					
0.48	0.890	1.289	1.595	2.007	2.342	2.708	3.098	3.616					
0.49	0.887	1.293	1.603	2.022	2.373	2.739	3.128	3.677					
0.50	0.885	1.297	1.610	2.052	2.403	2.785	3.189	3.738					

Tabla 9. Cuantiles regionales resultantes según Cv y el periodo de retorno

La intensidad de precipitación I (T, t) correspondiente a un período de retorno T, y a una duración del aguacero t, a emplear en la estimación de caudales por el método racional, se obtendrá por medio de la siguiente fórmula:

$$I(T, t) = I_d \cdot F_{int}$$

donde:

- I (T, t) en mm/h es la intensidad de precipitación correspondiente a un período de retorno T y a una duración del aguacero t.
- Id en mm/h es la intensidad media diaria de precipitación corregida correspondiente al período de retorno T.
- Fint (adimensional) es el factor de intensidad.

La intensidad de precipitación a considerar en el cálculo del caudal máximo anual para el período de retorno T, en el punto de desagüe de la cuenca Q_T , es la que corresponde a una duración del aguacero igual al tiempo de concentración (t = tc) de dicha cuenca.

La intensidad media diaria de precipitación corregida I_d, correspondiente al período de retorno T, se obtiene mediante la fórmula:

$$I_d = \frac{P_d \cdot K_A}{24}$$

siendo:

- Pd en mm la precipitación máxima diaria correspondiente al período de retorno T, obtenida a partir del documento "Máximas Lluvias Diarias en la España Peninsular" (Dirección General de Carreteras, 1999).
- K_A (adimensional) el factor reductor de la precipitación por área de la cuenca:
 - Si A < 1 km2 KA =
 - Si A \ge 1 km2 $K_A = 1 \frac{\log_{10} A}{15}$

El factor de intensidad Fint es adimensional e introduce la torrencialidad de la lluvia en el área de estudio. Se tomará el mayor valor de los obtenidos de entre los que se indican a continuación:

donde:

• Fa (adimensional): Factor obtenido a partir del índice de torrencialidad (I₁/I_d), en la zona de estudio I₁/I_d =9 (ver figura siguiente), y t la duración del aguacero en horas.

$$F_a = \left(\frac{I_1}{I_d}\right)^{3,5287 - 2,5287 t^{0,1}}$$

Fb (adimensional): Factor obtenido a partir de las curvas IDF de un pluviógrafo próximo.

$$F_b = k_b \frac{I_{IDF}(T, t_c)}{I_{IDF}(T, 24)}$$

siendo:

- I_{IDF} (T,tc) en mm/h: Intensidad de precipitación correspondiente al período de retorno T y al tiempo de concentración tc, obtenido a través de las curvas IDF del pluviógrafo.
- I_{IDF} (T,24) en mm/h: Intensidad de precipitación correspondiente al período de retorno T y a un tiempo de aguacero igual a veinticuatro horas (t = 24 h), obtenido a través de curvas IDF.
- k_b (adimensional): Factor que tiene en cuenta la relación entre la intensidad máxima anual en un período de veinticuatro horas y la intensidad máxima anual diaria. En defecto de un cálculo específico se puede tomar k_b = 1,13

Dado que no se dispone de datos de un pluviógrafo cercano se ha aplicado la formulación de la IDF de Témez para la obtención de los valores de F_b

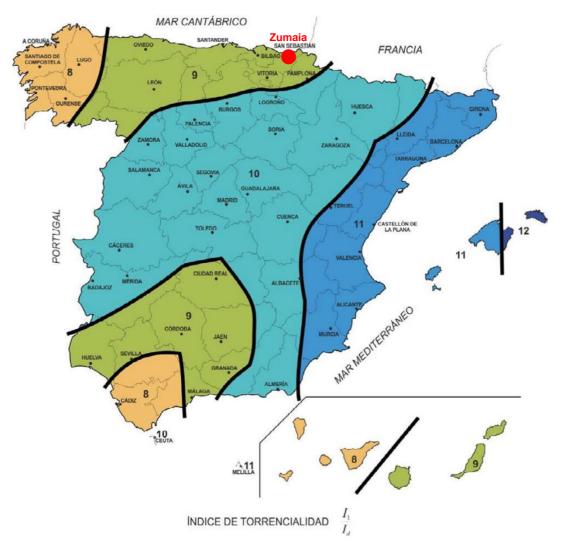


Figura 2 Índice de torrencialidad I_1/I_d (Norma 5.2 – IC Drenaje Superficial, 2016)

3.5. Tiempo de concentración

Para el cálculo del tiempo de concentración de las cuencas de drenaje se ha empleado la siguiente fórmula de la Norma 5.2 - IC drenaje superficial de la Instrucción de Carreteras.

$$T_c = 0.3 \times 60 \times \frac{L^{0.76}}{S^{0.19}}$$

Notación:

- Tc: Tiempo de concentración en minutos
- L: Longitud del curso más largo en km
- S: pendiente (m/m)

El cálculo de la intensidad de lluvia, para ser empleada en el Método Racional, se realizará con el tiempo de concentración de cada una de las cuencas de drenaje en estudio.

En el caso de cuencas muy pequeñas cuyo tiempo de concentración obtenido por la formulación anterior es inferior a 0,25 h, el tiempo de concentración se calcula utilizando la formulación del flujo difuso en tramos de características homogéneas y sumando los tiempos parciales obtenidos, distinguiendo entre:

- Flujo canalizado a través de cunetas u otros elementos de drenaje considerando régimen uniforme y aplicando la ecuación de Manning.
- Flujo difuso sobre el terreno:

$$t_{dif} = 2 \cdot L_{dif}^{0,408} \cdot n_{dif}^{0,312} \cdot J_{dif}^{-0,209}$$

Donde

- tdif (minutos) Tiempo de recorrido en flujo difuso sobre el terreno.
- ndif (adimensional) Coeficiente de flujo difuso.
- Ldif (m) Longitud de recorrido en flujo difuso.
- Jdif (adimensional) Pendiente media

En el caso de las cunetas, se ha considerado un tiempo de concentración de 5 minutos.

3.6. Coeficiente de escorrentía

El coeficiente de escorrentía se define como:

$$C = \frac{\left(\frac{P_d \cdot K_A}{P_0} - 1\right) \cdot \left(\frac{P_d \cdot K_A}{P_0} + 23\right)}{\left(\frac{P_d \cdot K_A}{P_0} + 11\right)}$$

donde:

- C: Coeficiente de escorrentía
- Pd: Precipitación diaria para un periodo de retorno dado (mm)
- $K_A = 1 \frac{\log_{10} A}{15}$ donde A es el área de la cuenca en km². KA=1 si A<1km²
- P₀: Umbral de escorrentía (mm)

A partir del mapa de grupos hidrológicos del suelo indicado en la norma 5.2 - IC Drenaje superficial de la Instrucción de Carreteras, el área del estudio se encuentra en zona de Grupo Hidrológico de Suelo C.

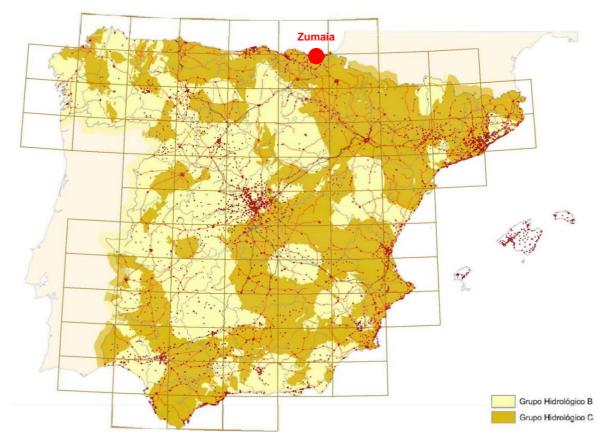


Figura 3. Grupos hidrológicos de suelo, Norma 5.2 - IC de la Instrucción de Carreteras (2016).

El proyecto se ubica en terrenos principalmente de zonas de prados y zonas urbanas. En función del reparto de usos en cada cuenca se ha asignado un valor de Po promedio, para grupos de suelo tipo C y con pendientes >3%, considerando los valores por usos de la tabla 2.3 Valor inicial del umbral de escorrentía Poi (mm) de la norma IC-5.2.

- Tejido urbano discontinuo 8 mm
- Prados y praderas 18 mm

Se realiza una media ponderada de las diferentes zonas en cada cuenca.

A este valor inicial se le aplica un factor corrector (tabla 2.5 de la norma IC-5.2) en función de la zona en que se encuentra la actuación. En este caso, la zona es la 13:

Figura 4. Regiones para el coeficiente corrector de P0, Norma 5.2 - IC (2016).

Los factores de corrección para el umbral de escorrentía resultantes para 10, 25 y 100 años de periodo de retorno son:

•	Para 10 años, el coeficiente	$\beta_m = 0.60 \text{ y } F_T = 1.00$	$\beta^{PM} =$
---	------------------------------	--	----------------

$$\beta^{PM} = \beta_m \cdot F_T = 0,600$$

Para 25 años, el coeficiente
$$\beta_m = 0.60 \text{ y } F_T = 1.15$$
 $\beta^{PM} = \beta_m \cdot F_T = 0.690$

$$\beta^{PM} = \beta_{...} \cdot F_T = 0.690$$

$$\beta_m = 0.60 \text{ y } F_T = 1.34$$

$$\beta_m = 0.60 \text{ y } F_T = 1.34$$
 $\beta^{PM} = \beta_m \cdot F_T = 0.804$

Región	Valor medio,	valor n tervalo		ra el in- anza del	Período de retorno I (años), F _T								
	β_m	50%	67%	90%	2	5	25	100	500				
11	0.90	∆ <i>50</i> 0,20	∆ <i>e7</i> 0,30	∆ <i>90</i> 0,50	0.80	0.90	1,13	1,34	1,59				
12	0,90	0,20	0.25	0,30	0,80	0,90	1,13	1,34	1,59				
13	0.60	0.15	0.25	0.40	0,74	0.90	1,15	1,34	1,55				
21	1,20	0,13	0,25	0,40	0,74	0,90	1,18	1,34	1,90				
22	1,50	0,15	0.20	0.35	0,74	0,90	1,12	1,27	1,37				
23	0.70	0.20	0.35	0,55	0,77	0.89	1,15	1,44	1,82				
24	1,10	0,15	0,20	0.35	0.76	0.90	1,14	1,36	1,63				
25	0.60	0,15	0.20	0.35	0.82	0.92	1,12	1,29	1,48				
31	0,90	0,13	0.30	0,50	0.87	0,93	1,10	1,26	1,45				
32	1.00	0.20	0,30	0,50	0,82	0,91	1,12	1,31	1,54				
33	2.15	0,25	0.40	0.65	0.70	0,88	1,15	1,38	1,62				
41	1,20	0,20	0,46	0,45	0,91	0,96	1,00	1,00	1,00				
42	2,25	0,20	0,35	0,55	0,67	0,86	1,18	1,46	1,78				
511	2,15	0,10	0,15	0,20	0,81	0,91	1,12	1,30	1,50				
512	0.70	0,20	0,30	0,50	1,00	1,00	1.00	1,00	1,00				
52	0,95	0,20	0,25	0.45	0.89	0,94	1,09	1,22	1,36				
53	2,10	0,25	0,35	0.60	0,68	0.87	1,16	1,38	1,56				
61	2,00	0,25	0,35	0,60	0,77	0,91	1,10	1,18	1,17				
71	1,20	0,15	0.20	0.35	0.82	0.94	1,00	1.00	1,00				
72	2,10	0.30	0.45	0.70	0,67	0.86	1,00	-	-				
81	1.30	0,25	0.35	0.60	0,76	0,90	1,14	1,34	1,58				
821	1.30	0.35	0.50	0.85	0,82	0,91	1,07	-	-				
822	2,40	0,25	0,35	0,60	0,70	0,86	1,16	-	-				
83	2.30	0.15	0.25	0.40	0.63	0.85	1,21	1.51	1.85				
91	0.85	0,15	0,25	0,40	0,72	0,88	1,19	1,52	1,95				
92	1,45	0,30	0,40	0,70	0,82	0,94	1,00	1,00	1,00				
93	1,70	0,20	0,25	0,45	0,77	0,92	1,00	1,00	1,00				
941	1,80	0,15	0,20	0,35	0,68	0,87	1,17	1,39	1,64				
942	1,20	0,15	0,25	0,40	0,77	0,91	1,11	1,24	1,32				
951	1,70	0,30	0,40	0,70	0,72	0,88	1,17	1,43	1,78				
952	0,85	0,15	0,25	0,40	0,77	0,90	1,13	1,32	1,54				
101	1,75	0,30	0,40	0,70	0,76	0,90	1,12	1,27	1,39				
1021	1,45	0,15	0,25	0,40	0,79	0,93	1,00	1,00	1,00				
1022	2,05	0,15	0,25	0,40	0,79	0,93	1,00	1,00	1,00				
	5.4 - 1211			-111	a landa la la d	., .,							

En Ceuta y Melilla se adoptarán valores similares a los de la región 61. Pueden obtenerse valores intermedios por interpolación adecuada a partir de los datos de esta tabla En todos los casos F_{10} =1,00

Tabla 10. Factores de corrección para el umbral de escorrentía.

Los umbrales de escorrentía corregidos para los diferentes periodos de retornos son.

Periodo	Umbral escorrentía corregido (mm)
10 años	$P_0 = P_0^i \cdot \beta = P_0^i \cdot 0,600$
25 años	$P_0 = P_0^i \cdot \beta = P_0^i \cdot 0,690$
100 años	$P_0 = P_0^i \cdot \beta = P_0^i \cdot 0,804$

Tabla 11. Factores de corrección para el umbral de escorrentía.

Lo expuesto en estos apartados son la fuente de los datos utilizados en el Apéndice nº1 "Cálculo de los caudales de drenaje".

3.7. Coeficiente de uniformidad en la distribución temporal de la precipitación

El coeficiente Kt tiene en cuenta la falta de uniformidad en la distribución temporal de la precipitación. Se obtendrá a través de la siguiente expresión:

$$Kt = 1 + \frac{Tc}{Tc^{1.25} + 14}$$

donde:

- Kt (adimensional) Coeficiente de uniformidad en la distribución temporal de la precipitación.
- tc (horas) Tiempo de concentración de la cuenca descrito en el apartado 3.3.

3.8. Estimación de los caudales a desaguar

3.8.1. Período de retorno

Para el cálculo del caudal de referencia empleado para el dimensionamiento de las diferentes obras de drenaje se han considerado los siguientes periodos de retorno:

- 10 años, para evacuación de agua en cubiertas.
- 25 años sumideros, cunetas, colectores, caños y obras con sección de desagüe inferior a entre 0.75 m².
- 100 años para caños, alcantarillas, bajantes escalonadas, tajeas, pontones y obras con sección de desagüe entre 0,75 m² y 5 m².

3.8.2. Características de las cuencas drenadas

A continuación, se describirán las características de las cuencas interceptadas drenadas, con su superficie, longitud y desnivel. Con estas características y lo descrito en apartados anteriores se procederá al cálculo de los caudales de proyecto con los que dimensionaremos las obras de drenaje transversal.

CUENCA	Superficie	Q25
	m2	m³/s
C-01	6.013	0,190
C-02	13.072	0,410
C-03	5.421	0,170
C-1-1	72	0,002
C-1-2	376	0,011
C-1-3	189	0,005
C-1-4	152	0,004
C-1-5	300	0,008
C-1-6	109	0,003
U-1-1	355	0,010
U-1-2	339	0,009
U-1-3	141	0,004
C-2-1	27	0,001
C-2-2	30	0,001
C-2-3	27	0,001
C-2-4	20	0,001
U-2-1	383	0,011
U-2-2	342	0,010
CN-1	461	0,013
CN-2	380	0,011
CN-3	380	0,011
CN-4	380	0,011
CN-5	374	0,010
CA-1	203	0,006

Tabla 12. Características de las cuencas drenadas

4. Drenaje

El drenaje de la plataforma está constituido por un conjunto de caces y colectores, que, en régimen hidráulico de lámina libre, recogen, canalizan y evacuan las aguas hacia los puntos exteriores de conexión.

4.1. Criterios de diseño

Para el dimensionamiento del drenaje se siguen los siguientes criterios:

- Las aportaciones a las cunetas provienen de las calzadas, desmontes, y de pequeñas cuencas naturales o intercuencas interceptadas. El dimensionamiento hidráulico de cunetas y colectores se basa en los caudales generados para el periodo de retorno de 25 años.
- La velocidad de circulación de agua está comprendida entre 0,5 y 5,5 m/s. en colectores y cunetas de hormigón en situación de avenidas.
- Los caños (obras transversales del drenaje longitudinal) y colectores se han tratado de dimensionar de tal forma que el caudal correspondiente al período de retorno considerado no ocupe más del 80 % de la sección.
- Los colectores se proyectan íntegramente en tubería de hormigón, con un coeficiente de rugosidad de Manning igual a 0,010 para PVC y 0,017 para hormigón. El diámetro mínimo adoptado para ellos es de 315 mm con tubería de PVC. A partir de 400 mm, serán de hormigón,

- Se dispondrán arquetas con distancia máxima entre ellas de 50 m.
- Los sumideros de recogida de aguas en las distintas superficies de la urbanización son puntuales, evitando las rejillas lineales.
- Las tapas de los pozos de registro, las rejillas de los sumideros y sus correspondientes marcos son de fundición dúctil, según tipología reflejada en los planos de detalle, para cumplir la normativa EN-124 para dispositivos de categoría D-400.

4.2. Cálculos hidráulicos

A continuación se adjuntan los cálculos hidráulicos realizados tramo por tramo, resumidos en unas tablas finales que se incluyen a continuación, en las que se recogen las características principales de cada tramo y sus resultados.

Colector de Pluviales	Punto inicial	Punto final	Longitud parcial (m)	Cota Tapa inicial	Cota Tapa final	Pendiente media superf (%)	Cota Rasante Inicial	Cota Rasante Final	Pendiente media (%)	Diámetro Proyectado (mm)	Material	Manning	Caudal recogido (l/s)	Caudal Tramo (l/s)	Caudal Sección Ilena	Percentil de Ilenado	Velocidad (m/s)	Calado (mm)	Froude
COLECTOR A																			
	A-7	A-6	30,8	11,81	11,64	0,6%	10,98	10,80	0,60%	315	PVC	0,010	12	12	111		0,93	70	1,34
	A-6	A-5	28,1	11,64	11,42		10,80	10,63	0,60%	315	PVC	0,010	20	32	111		1,23	116	1,34
	A-5	A-4	35,5	11,42	11,22		10,50	10,29	0,60%	315	PVC	0,010	4	36	111		1,27	123	1,34
	A-4	A-3	32,1	11,22	11,08		9,50	9,18	1,00%	800	Hormigón	0,017	415	451	1011		1,95	374	1,16
	A-3	A-2	4,7	11,08	10,40	14,5%	9,15	9,10	1,00%	800	Hormigón	0,017	4	455	1011		1,96	376	1,16
	A-2	A-1	48,3	10,40	10,45	-0,1%	9,10	8,62	1,00%	800	Hormigón	0,017	10	465	1011	46,03%	1,97	381	1,16
	A-1-3	A-1-2	3.9	10.93	10,93	0.0%	9.90	9.86	1.00%	500	Hormigón	0.017	193	193	289	66.86%	1,58	299	1,01
	A-1-3	A-1-2 A-1-1	9.7	10,93	10,93	-0,1%	9,90	9,76	1,00%	500	Hormigón	0.017	193	203	289		1,58	309	0,99
	A-1-1	A-1	9,7	10,94	10,45	5,1%	9,76	9,66	1,00%	500	Hormigón	0,017	10	213	289		1,61	319	0,98
COLECTOR B																			
COLECTOR B	B-13	B-12	13.0	11,88	11.64	1.8%	11,00	10.74	2.00%	315	PVC	0.010	3	3	202	1.48%	0,95	27	2,25
	B-13	B-12	16,3	11,64	11,32		10,74	10,74	2,00%	315	PVC	0,010	14	17	202		1,57	61	2,43
	B-12	B-10	16,3	11,32	11,00	2,0%	10,74	10,41	2,00%	315	PVC	0.010	11	28	202		1.83	79	2,46
	B-10	B-9	15.4	11.00	10.68	2.1%	10,08	9.77	2,00%	315	PVC	0.010	11	40	202		2,01	94	2,47
	B-10	B-8	8.4	10.68	10,54	1.7%	9.77	9.60	2,00%	315	PVC	0.010	21	61	202		2,27	118	2,45
	B-8	B-7	14.2	10,54	9,40	8.0%	9.60	8,75	6.00%	600	Hormigón	0,017	436	496	1150		3,92	275	2,72
	B-7	B-6	15,8	9,40	7,20	13.9%	8.75	7,80	6.00%	600	Hormigón	0,017	430	496	1150		3,92	275	2,7
	B-6	B-5	15.0	7.20	4.75	16,3%	7.80	6.90	6.00%	600	Hormigón	0,017	0	496	1150		3,92	275	2,7
	B-5	B-4	5,4	4,75	4,00	13,9%	6.90	6,58	6,00%	600	Hormigón	0,017	0	496	1150		3.92	275	2,72
	B-4	B-3	9.3	4.00	3,50	5.4%	6.58	6,02	6.00%	600	Hormigón	0.017	5	501	1150		3,93	277	2,72
	B-3	B-2	11.1	3,50	3,20	2,7%	6,02	5,80	2,00%	600	Hormigón	0,017	5	506	664		2,59	392	1,4
	B-2	B-1	8,6	3,20	3,16		5,80	5,63	2,00%	600	Hormigón	0,017	5	511	664		2,59	395	1,4
	B-8-1-3	B-8-1-2	14,1	11,64	10,85	5,6%	10,80	10,01	5,60%	315	PVC	0,010	9	9	339		1,87	35	3,88
	B-8-1-2	B-8-1-1	6,6	10,85	10,53	4,8%	10,01	9,61	6,00%	315	PVC	0,010	6	14	351		2,22	44	4,09
	B-8-1-1	B-8	2,9	10,53	10,54	-0,3%	9,61	9,58	1,00%	315	PVC	0,010	0	14	143	10,07%	1,18	67	1,73
	B-8-2	B-8	5,1	10,60	10,54	1,2%	9,50	9,40	2,00%	600	Hormigón	0,017	421	421	664	63,44%	2,49	347	1,48
	B-9-1	B-9	6,2	10,86	10,68	2,9%	10,00	9,88	2,00%	315	PVC	0,010	10	10	202	5,17%	1,37	49	2,39

Tabla 13. Cálculos hidráulicos red de drenaje

4.3. Redes de drenaje

Las redes de drenaje se han definido a partir de las subcuencas obtenidas a partir de los puntos altos y bajos de los taludes generados. En el plano se definen las subcuencas. Una vez obtenidas las subcuencas se han calculado los caudales con un periodo de retorno de 25 años.

4.3.1. Cunetas de guarda

El agua superficial de las distintas subcuencas es recogida por las cunetas de guarda, las cuales se definirán en los planos de detalles de drenaje.

4.3.2. <u>Bajantes escalonadas de hormigón armado</u>

Se dispondrán bajantes en los tramos de desmonte, en los que, debido a su gran desnivel, no sea posible poner un colector, para conducir el caudal recogido hacia algún otro elemento o hacia el cauce natural.

La principal función de una bajante es salvar, bajo control, un desnivel importante, esto se consigue mediante la sucesión de saltos verticales alcanzando la velocidad crítica al pasar por cada labio de rebose e inmediatamente queda amortiguada con la sumersión del chorro en el siguiente cuenco.

Se han proyectado tres bajantes.

4.3.2.1. Arquetas

Son los elementos que sirven de recogida de agua de las cunetas y drenes hasta los colectores, asegurando, a la vez, la inspección y conservación de los dispositivos enterrados de desagüe. Van situados en los puntos de encuentro de colectores, en sumideros y en cambio de dirección de la tubería en planta y alzado.

Se construirán según se muestra en planos de detalles, de forma cuadrada o rectangular y las dimensiones mínimas en planta dependerán de su profundidad y diámetro de tubo.

Se han dispuesto distintos tipos de arquetas para recoger el drenaje según se representa en los planos de "detalles":

- Sumidero.
- Pozo con rejilla de fundición.
- Pozo de registro con tapa de fundición.

4.3.2.2. Colectores

Los colectores estarán formados por piezas de PVC 315 mm y de hormigón prefabricado de diferentes diámetros: 500, 600 y 800 mm.

La pendiente viene determinada por la rasante de proyecto. Se evitarán los tramos con poca pendiente, que favorezcan el depósito de sedimentos. En este sentido se adopta una pendiente mínima del 0,5%. La pendiente máxima viene limitada por la velocidad del agua que no debe sobrepasar el valor de 5 m/s.

La capacidad máxima de los colectores viene dada por su funcionamiento al 80% de llenado para evitar entrar en carga.

Se han definido dos redes de colectores:

- Red A, zona oeste, que conecta en la obra de drenaje transversal, situada en la estación de Zumaia.
- Red B, zona este, que desagua por debajo del camino de Basusta.

Las redes de colectores actuales y proyectadas se ven reflejados en los planos de "Drenaje".

4.4. Drenaje subterráneo

4.4.1. Introducción

El drenaje subterráneo tiene como objetivo principal el controlar y limitar la humedad y agua de la capa de forma y bajo la capa inferior del sub-balasto y de los diversos elementos que componen la vía ferroviaria. Con esta acción se preserva a los materiales que constituyen las capas de la acción del agua, manteniendo las condiciones necesarias para que su capacidad portante y su comportamiento frente a la solicitación del tráfico de trenes pueda ajustarse a lo previsto.

4.4.2. Situación actual

El tramo de la estación de Zumaia que afecta el proyecto no se distingue ningún tipo de drenaje subterráneo, la cual cabe la posibilidad de posible contaminación de las capas de balasto por la inexistencia de geotextil bajo las capas de balasto.

4.5.3. Actuaciones previstas

Se proyecta la construcción de un nuevo drenaje subterráneo en la zona de la playa de vías previa a las cocheras que consiga evacuar y controlar el agua libre que accede al interior de la estructura del firme o a su explanada de asiento. Para ello se colocará en las zonas donde se ha observado como necesario una tubería de drenaje de PVC ranurada corrugada circular de pared simple de diámetro 300 mm. Las tuberías deberán tener un ranurado parcial, con ranuras en un arco de 220º.

Tal y como se aprecia en los planos de detalle, el sistema deberá colocarse de forma que se mantenga el nivel de las aguas de escorrentía por debajo de las capas de balasto.

5. Cubiertas

Para el cálculo del drenaje de cubiertas, se contrasta con los valores facilitados por el CTE.

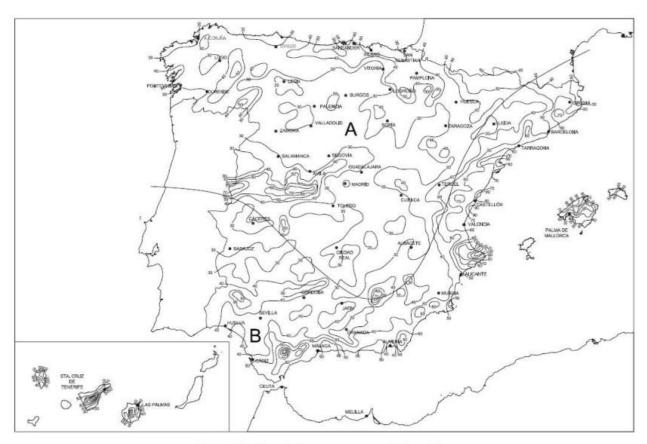


Figura B.1 Mapa de isoyetas y zonas pluviométricas

Intensidad Pluviométrica i (mm/h)												
Isoyeta	10	20	30	40	50	60	70	80	90	100	110	120
Zona A	30	65	90	125	155	180	210	240	275	300	330	365
Zona B	30	50	70	90	110	135	150	170	195	220	240	265

Figura 5. CTE. Mapa de isoyetas y zonas pluviométricas.

Para el proyecto en estudio según el CTE la intensidad sería la indicada para la isoyeta 50, y zona A. Es decir **155 mm/h.**

Este valor lo comparamos con los resultados obtenidos con el método racional expuesto anteriormente. Equivale a un tiempo de tormenta de 4 minutos, y un período de retorno de 10 años.

	Descripción	Valor
Pm	Precipitación media	65 mm/día
Cv	Coeficiente de variación	0,38
I1/Id		8
Т	Periodo de retorno	10 años
Yt	cuantil adimensional regional (función de T y Cv)	1,469
Id	Xt/24	95,48 mm/día
t	Duración de aguacero	4 minutos
Valor de Z		1,60
It	Intensidad	150 mm/h

El dimensionamiento de la red de desagüe de las cubiertas se ha realizado de acuerdo al CTE-sección HS 5. Evacuación de aguas, Punto 4.2 Dimensionado de la red de evacuación de aguas pluviales.

- **1. Número mínimo de sumideros**; 1 cada 150 m2. Se han colocado cada 380 − 400 m2 → Cuando por razones de diseño no se instalen estos puntos de recogida debe preverse de algún modo la evacuación de las aguas de precipitación, como por ejemplo colocando **rebosaderos**.
- 2. Canalón: diámetro nominal para pendiente del 0,5%.

Cuarto agentes: 200 m2. 150 mm x 2 = 300 mm

Nave: 400 m2 250 mm x 2 = 500 mm (la norma señala que hay que corregir la superficie servida).

3.Bajantes

Nave: diámetro de 160 mm (vale para superficie de 1.544/2 = 772 m2>400 m2).

Agentes: diámetro de 110 mm (vale para superficie de 580/2 = 290 m2>290 m2.

Apéndice Nº 1 Cálculo hidráulico

ø.	,34	1,34	1,34	1,16	1,16	1,16	5	5 6	0,00		2,25	2,43	2,46	2,47	2,45	2,72	2,72	2,72	2,72	2,72	1,41	1,40	3,88	4,09	1,73	1,48	2,39
Froude		_		_				- (.,	.,	.,	.,	.,	.,	.,		.,		•	(.,	7	-		
Calado (mm)	20	116	123	374	376	381	299	000	330		27	61	79	94	118	275	275	275	275	277	392	395	32	4	29	347	49
Velocidad (m/s)	0,93	1,23	1,27	1,95	1,96	1,97	1 58	5 5	, 5 64 64		0,95	1,57	1,83	2,01	2,27	3,92	3,92	3,92	3,92	3,93	2,59	2,59	1,87	2,22	1,18	2,49	1,37
Percentil de Ilenado	10,78%	28,82%	32,38%	44,62%	45,04%	46,03%	%98 99 9	1000	72.70%		1,48%	8,23%	13,89%	19,52%	29,94%	43,15%	43,15%	43,15%	43,15%	43,59%	76,25%	77,00%	2,58%	4,11%	10,07%	63,44%	5,17%
Caudal Sección Ilena	111	111	111	1011	1011	1011	289	000	700		202	202	202	202	202	1150	1150	1150	1150	1150	664	664	339	351	143	664	202
Caudal Tramo (Vs)	12	32	36	451	455	465	193	2 0	203		က	17	28	40	61	496	496	496	496	501	206	511	о	4	14	421	10
Caudal recogido (l/s)	12	20	4	415	4	10	103	2 5	5 5		8	4	1	1	21	436	0	0	0	2	2	5	о	9	0	421	10
Manning	0,010	0,010	0,010	0,017	0,017	0,017	0.017	0,0	0,017		0,010	0,010	0,010	0,010	0,010	0,017	0,017	0,017	0,017	0,017	0,017	0,017	0,010	0,010	0,010	0,017	0,010
Material	PVC	PVC	PVC	Hormigón	Hormigón	Hormigón	Horminón		Hormigon	ס	PVC	PVC	PVC	PVC	PVC	Hormigón	PVC	PVC	PVC	Hormigón	PVC						
Diámetro Proyectado (mm)	315	315	315	800	800	800	200	9 6	000		315	315	315	315	315	009	009	009	009	009	009	009	315	315	315	009	315
Pendiente media (%)	%09'0	%09'0	%09'0	1,00%	1,00%	1,00%	1 00%	0,00,1	,00%		2:00%	2,00%	2,00%	2,00%	2,00%	%00'9	%00'9	%00'9	%00'9	%00'9	2,00%	2,00%	2,60%	%00'9	1,00%	2,00%	2,00%
Cota Rasante Final	10,80	10,63	10,29	9,18	9,10	8,62	986	0,0	9,0		10,74	10,41	10,08	9,77	09'6	8,75	7,80	06'9	6,58	6,02	5,80	5,63	10,01	9,61	9,58	9,40	88'6
Cota Rasante Inicial	10,98	10,80	10,50	9,50	9,15	9,10	06 6	8,6	9,00		11,00	10,74	10,41	10,08	9,77	09'6	8,75	7,80	6,90	6,58	6,02	2,80	10,80	10,01	9,61	9,50	10,00
Pendiente media superf (%)	%9'0	0,8%	%9'0	0,4%	14,5%	-0,1%	%0 0	0,0,0	-0,-% 1,-%		1.8%	2,0%	2,0%	2,1%	1,7%	8,0%	13,9%	16,3%	13,9%	5,4%	2,7%	0,5%	2,6%	4,8%	-0,3%	1,2%	2,9%
Cota Tapa final	11,64	11,42	11,22	11,08	10,40	10,45	10 93	0,0	10,94		11,64	11,32	11,00	10,68	10,54	9,40	7,20	4,75	4,00	3,50	3,20	3,16	10,85	10,53	10,54	10,54	10,68
Cota Tapa (inicial	11,81	11,64	11,42	11,22	11,08	10,40	10 93	5 6	10,93		11,88	11,64	11,32	11,00	10,68	10,54	9,40	7,20	4,75	4,00	3,50	3,20	11,64	10,85	10,53	10,60	10,86
Longitud parcial (m)	30,8	28,1	35,5	32,1	4,7	48,3	0 8	1 0	~ ^ c	;	13,0	16,3	16,3	15,4	8,4	14,2	15,8	15,0	5,4	6,6	11,1	8,6	14,1	9'9	2,9	5,1	6,2
Punto final	A-6	A-5	A-4	A-3	A-2	A-1	Δ-1-2	7 .	A- I-		B-12	B-11	B-10	B-9	B-8	B-7	B-6	B-5	B-4	B-3	B-2	B-1	B-8-1-2	B-8-1-1	B-8	B-8	B-9
Punto inicial Punto final	A-7	A-6	A-5	A-4	A-3	A-2	Δ-1-3		A-1-2		B-13	B-12	B-11	B-10	B-9	B-8	B-7	B-6	B-5	B-4	B-3	B-2	B-8-1-3	B-8-1-2	B-8-1-1	B-8-2	B-9-1

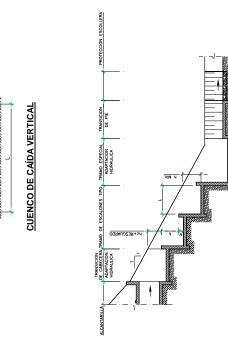
Apéndice Nº 2 Cálculo bajantes

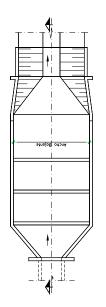
CÁLCULO BAJANTES ESCALONADAS

BAJANTE ESCALONADA B1 EN CUENCA 01

CÁLCULO HIDRÁULICO DE LA BAJANTE ESCALONADA Según metodología del United States Bureau Of Reclamation Caso: Cuenco amortiguador de caída vertical.

DATOS


0,19 m³/s	0,50	1,50 m	2,40 m	0,20 m
Q diseño=	Talud T =	Ancho bajante=	= u	Espesor pared =


CÁLCULO DE LA LONGITUD MÍNIMA DEL ESCALÓN

0,12 m 0,06 m 1,08 m/s	1,15 m	1,00 m
Calado crítico bajante hc= Altura del muro frontal h'= Velocidad crítica Vc=	L mín =	L proyectada =

ALTURA MÍNIMA DEL MURO LATERAL DE LA BAJANTE

0,30 m 0,12 m 0,06 m	0,48 m	0'00 m
resguardo mín= hc = h ' =	h _{min} muro =	h_{min} proyectada =

ESQUEMA DE BAJANTE ESCALONADA

CÁLCULO BAJANTES ESCALONADAS

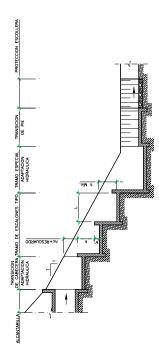
BAJANTE ESCALONADA B2 EN CUENCA 02

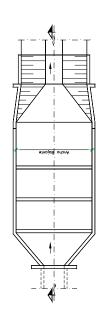
CÁLCULO HIDRÁULICO DE LA BAJANTE ESCALONADA Según metodología del United States Bureau Of Reclamation Caso: Cuenco amortiguador de caída vertical.

DATOS

$0,41 \text{ m}^3/\text{s}$	0,50	1,50 m	2,40 m	0.20 m
Q diseño=	Talud T =	Ancho bajante=	н =	Espesor pared =

,4


CUENCO DE CAÍDA VERTICAL


CÁLCULO DE LA LONGITUD MÍNIMA DEL ESCALÓN

	1,00 m
Calado crítico bajante hc= Altura del muro frontal h'= Velocidad crítica Vc= L mín =	L proyectada =

ALTURA MÍNIMA DEL MURO LATERAL DE LA BAJANTE

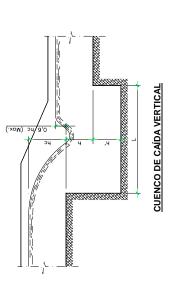
0,30 m 0,20 m 0,10 m	0,60 m	0'00 W
resguardo mín= hc = h ' =	h min muro =	h min proyectada =

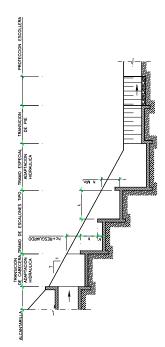
ESQUEMA DE BAJANTE ESCALONADA

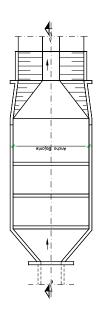
BAJANTE ESCALONADA B1 EN CUENCA 03

CÁLCULO HIDRÁULICO DE LA BAJANTE ESCALONADA Según metodología del United States Bureau Of Reclamation Caso: Cuenco amortiguador de caída vertical.

DATOS


$0,19 \text{ m}^3/\text{s}$	2,50	1,50 m	0,50 m	0.20 m
Q diseño=	Talud T =	Ancho bajante=	= u	Espesor pared =


CÁLCULO DE LA LONGITUD MÍNIMA DEL ESCALÓN


0,12 m	0,06 m	1,08 m/s	0,57 m	1,05 m
Calado crítico bajante hc =	Altura del muro frontal h' =	Velocidad crítica Vc=	L mín =	L proyectada =

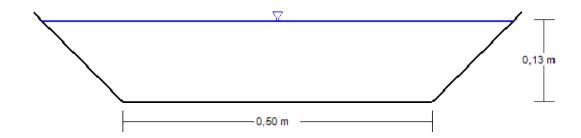
ALTURA MÍNIMA DEL MURO LATERAL DE LA BAJANTE

0,30 m 0,12 m 0,06 m	0,48 m	0,50 m
resguardo mín= hc = h ' =	h mín muro =	h_{min} proyectada =

ESQUEMA DE BAJANTE ESCALONADA

Apéndice Nº 3 Cálculo cunetas de guarda

Cross Section for Cuneta_guarda-C-01


Project Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0,013	
Channel Slope	0,02031	m/m
Normal Depth	0,13	m
Left Side Slope	1,00	m/m (H:V)
Right Side Slope	1,00	m/m (H:V)
Bottom Width	0,50	m
Discharge	0,19	m³/s

Cross Section Image

V:1

Cuneta_guarda-C-01_Infomre

D	4 D	
Projec	t Desc	ription

Friction Method Manning Formula
Solve For Normal Depth

Input Data

 Roughness Coefficient
 0,013

 Channel Slope
 0,02031 m/m

 Left Side Slope
 1,00 m/m (H:V)

 Right Side Slope
 1,00 m/m (H:V)

 Bottom Width
 0,50 m

 Discharge
 0,19 m³/s

Results

Normal Depth 0,13 m Flow Area 0,08 m² Wetted Perimeter 0,87 m Hydraulic Radius 0,10 m Top Width 0,76 m Critical Depth 0,21 m Critical Slope 0,00383 m/m Velocity 2,29 m/s Velocity Head 0,27 m Specific Energy 0,40 m Froude Number 2,21 Flow Type Supercritical

GVF Input Data

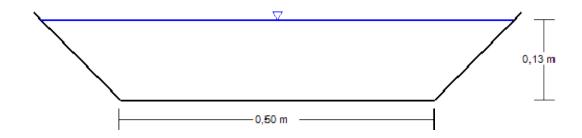
Downstream Depth 0,00 m
Length 0,00 m
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0,00 Downstream Velocity Infinito **Upstream Velocity** Infinito m/s 0,13 m Normal Depth 0,21 Critical Depth m Channel Slope 0.02031 m/m 0,00383 m/m Critical Slope

Cross Section for Cuneta_guarda-C-02-Oeste


Project Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0,013	
Channel Slope	0,10889	m/m
Normal Depth	0,13	m
Left Side Slope	1,00	m/m (H:V)
Right Side Slope	1,00	m/m (H:V)
Bottom Width	0,50	m
Discharge	0,41	m³/s

Cross Section Image

V:1 \(\sum_{\text{H:1}} \)

Cuneta_guarda-C-02-Oeste_Informe

D		D '	12
Pro	IACT	Descri	ntion
1 10		DCSCII	Puon

Friction Method Manning Formula
Solve For Normal Depth

Input Data

 Roughness Coefficient
 0,013

 Channel Slope
 0,10889
 m/m

 Left Side Slope
 1,00
 m/m (H:V)

 Right Side Slope
 1,00
 m/m (H:V)

 Bottom Width
 0,50
 m

 Discharge
 0,41
 m³/s

Results

Normal Depth 0,13 m Flow Area 0,08 m² Wetted Perimeter 0,86 m Hydraulic Radius 0,09 m Top Width 0,75 m Critical Depth 0,33 m Critical Slope 0,00356 m/m Velocity 5,18 m/s Velocity Head 1,37 m Specific Energy 1,50 m Froude Number 5,10 Flow Type Supercritical

GVF Input Data

Downstream Depth 0,00 m
Length 0,00 m
Number Of Steps 0

GVF Output Data

Upstream Depth

 Profile Description
 0,00 m

 Profile Headloss
 0,00 m

 Downstream Velocity
 Infinito m/s

 Upstream Velocity
 Infinito m/s

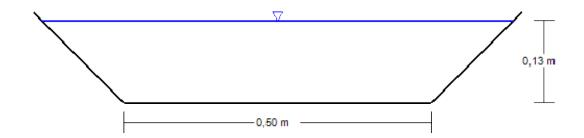
 Normal Depth
 0,13 m

 Critical Depth
 0,33 m

 Channel Slope
 0,10889 m/m

 Critical Slope
 0,00356 m/m

Cross Section for Cuneta_guarda-C-02-Este


Project Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0,013	
Channel Slope	0,09054	m/m
Normal Depth	0,13	m
Left Side Slope	1,00	m/m (H:V)
Right Side Slope	1,00	m/m (H:V)
Bottom Width	0,50	m
Discharge	0,41	m³/s

Cross Section Image

V:1 \(\sum_{H:1} \)

Cuneta_guarda-C-02-Este_Informe

Project Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

 Roughness Coefficient
 0,013

 Channel Slope
 0,09054
 m/m

 Left Side Slope
 1,00
 m/m (H:V)

 Right Side Slope
 1,00
 m/m (H:V)

 Bottom Width
 0,50
 m

 Discharge
 0,41
 m³/s

Results

Normal Depth 0,13 m Flow Area 0,08 m² Wetted Perimeter 0,88 m Hydraulic Radius 0,10 m Top Width 0,77 m Critical Depth 0,33 m Critical Slope 0,00356 m/m Velocity 4,86 m/s Velocity Head 1,20 m 1,34 m Specific Energy Froude Number 4,68 Flow Type Supercritical

GVF Input Data

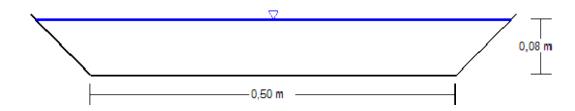
Downstream Depth 0,00 m
Length 0,00 m
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0,00 Downstream Velocity Infinito **Upstream Velocity** Infinito m/s 0,13 m Normal Depth 0,33 m Critical Depth Channel Slope 0.09054 m/m 0,00356 m/m Critical Slope

Cross Section for Cuneta_guarda-C-03


Project Description

Friction Method Manning Formula
Solve For Normal Depth

Input Data

Roughness Coefficient	0,013	
Channel Slope	0,10861	m/m
Normal Depth	0,08	m
Left Side Slope	1,00	m/m (H:V)
Right Side Slope	1,00	m/m (H:V)
Bottom Width	0,50	m
Discharge	0,17	m³/s

Cross Section Image

V: 1 ____ H: 1

Cuneta_guarda-C-03_Informe

Droinet	Description
F I CHECL	1765611011011

Friction Method Manning Formula
Solve For Normal Depth

Input Data

 Roughness Coefficient
 0,013

 Channel Slope
 0,10861 m/m

 Left Side Slope
 1,00 m/m (H:V)

 Right Side Slope
 1,00 m/m (H:V)

 Bottom Width
 0,50 m

 Discharge
 0,17 m³/s

Results

Normal Depth 0,08 m Flow Area 0,04 m² Wetted Perimeter 0,71 m Hydraulic Radius 0,06 m Top Width 0,65 m Critical Depth 0,20 m Critical Slope 0,00387 m/m Velocity 3,92 m/s Velocity Head 0,78 m Specific Energy 0,86 m Froude Number 4,86

Supercritical

GVF Input Data

Flow Type

Downstream Depth 0,00 m
Length 0,00 m
Number Of Steps 0

GVF Output Data

Upstream Depth

Profile Description Profile Headloss 0,00 Downstream Velocity Infinito **Upstream Velocity** Infinito m/s 0,08 Normal Depth m Critical Depth 0,20 m Channel Slope 0,10861 m/m 0,00387 m/m Critical Slope

Apéndice Nº 4 Análisis climatológico. Series de precipitación

Fuente: «© Ministerio para la Transición Ecológica (MITECO)».

PRECIPITACIÓN TOTAL MENSUAL													
AÑO						MEN	SUAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANUAL
1979	391,5	145,9	209,8	270,4	117,8	99,8	87,1	139,5	109,7	164,8	311,8	158,2	2206,3
1980	148,7	57,8	187,9	47	263,1	96,5	81,9	54,7	132,9	268	123,1	257,1	1718,7
1981	293,5	102,8	110,8	128,6	95,1	61,7	128,8	99,4	119,4	294,4	32,6	335,4	1802,5
1982	112,2	151,7	194,2	7,9	73,5	69,5	66,1	123,6	62,6	323,4	189,5	278,1	1652,3
1983	48,7	160,2	135,1	124,8	112,4	80,1	138,7	337	36,9	86,6	50,5	54	1365,0
1984	299,6	196,2	69,8	62,1	229,6	68,1	25,3	120,8	167,6	142	221,7	162	1764,8
1985	141,8	63,6	218,9	84,3	253,2	59,6	79,1	92,3	3,5	93,1	166,5	96,9	1352,8
1986	303,4	128,1	111,1	332,5	65,5	107,8	15,3	104,9	156,1	63,9	150,6	193,4	1732,6
1987	122,1	221,2	103	104,1	48,5	135,8	81,1	77,4	36,8	215	221,1	43,5	1409,6
1988	275,9	146,9	159,3	123,3	123	105,1	110	92,3	55,9	35,2	15,5	108,4	1350,8
1989	47,8	138,8	76,5	250,5	80,6	35,8	84,9	66,8	105,1	35,5	144,3	22,1	1088,7
1990	176,5	55,6	37,1	271,1	113,5	122,9	68,2	69	77,3	160,6	238,7	203,5	1594,0
1991	90,1	59,4	105,6	207,2	125,4	37,8	70,5	40,5	204,2	139,3	241,7	36,4	1358,1
1992	66,6	50,2	115,5	115,3	85,9	178,4	87,6	169	122,3	360,1	118,2	199,6	1668,7
1993	5,5	42	57,6	176,3	94,4	102,6	115,5	95,3	221,9	110,5	108,9	233,6	1364,1
1994	160,5	159,4	92	266,1	108,1	121,4	62,5	54,6	262,5	185,6	81,6	194,2	1748,5
1995	216,1	144,2	142,8	62,1	116,8	18,1	110,7	113,4	186,2	19	64,2	118	1311,6
1996	82,5	247,5	70,7	77	90,5	74	84,8	197,3	77,7	143,9	289,7	167,1	1602,7
1997	141	18,4	32,9	70,1	263,3	256,9	187,7	134,8	108,6	67,4	276,4	176	1733,5
1998	64,6	46,9	57,8	229,4	93,2	85	89,2	74	128,6	386,9	191,4	90,3	1537,3
1999	127,9	135,1	167,5	109,7	140,8	54,2	53,2	66,2	139,3	49,9	185,6	198,9	1428,3
2000	19,4	111,3	131,3	197,9	92,3	67,9	171,5	116,5	82,1	290,1	216,2	86	1582,5
2001	146,8	77,8	126,9	108,4	63,5	66,2	145,4	67,5	69,9	56,3	94	35,5	1058,2
2002	31	145,9	44	109,1	243,1	119,1	83,3	280,4	36,9	176,4	154,8	252,9	1676,9
2003	174	111	88,2	49,4	123,2	57,3	38,6	62,6	139,3	214,3	134	157	1348,9
2004	214	95,7	115,1	95	95,5	52,9	48,5	134,5	104,6	176,6	149,8	149,7	1431,9

	PRECIPITACIÓN TOTAL MENSUAL													
ΔÑΟ	MENSUAL AÑO												ANUAL	
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANOAL	
2005	98,8	79,8	65,7	201,8	75,5	24,3	37,7	55,4	133,6	99,5	296,4	194,7	1363,2	
2006	102,8	67,8	168,6	80,4	62	145,8	87,3	66,3	109,5	110,1	128,3	120	1248,9	
2007	144,6	134,5	211	100,6	120,9	69,4	53,6	277,5	99	142,5	44,8	137,7	1536,1	
2008	138,6	32,6	238	123,7	197,4	133,4	76,5	99,9	73,2	327,8	248,3	220,1	1909,5	
N	30	30	30	30	30	30	30	30	30	30	30	30	30	
MEDIA	146,22	110,94	121,49	139,54	125,59	90,25	85,69	116,11	112,11	164,62	163,01	156,01	1531,57	
MAX	391,5	247,5	238	332,5	263,3	256,9	187,7	337	262,5	386,9	311,8	335,4	391,5	
MIN	5,5	18,4	32,9	7,9	48,5	18,1	15,3	40,5	3,5	19	15,5	22,1	3,5	

PRECIPITACIÓN MÁXIMA DIARIA													
AÑO						MENS	SUAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANUAL
1979	70	31,1	34,3	55,8	28	22,1	50,5	38,5	28,1	29	76,5	30,9	76,5
1980	25,4	17,2	37,8	12,1	73,3	37,1	27,1	17,9	100,4	55	35,7	58,9	100,4
1981	73,7	22,8	21,3	36,8	29,8	24,9	41,1	56,2	26,4	135,1	9,7	88,7	135,1
1982	30,5	25,5	31,3	5,6	17,5	21,4	20,1	48,9	20,4	65,4	32,9	45,6	65,4
1983	10	27,7	28,4	27,8	22,3	22,6	31,5	66	10,2	39,9	23,3	17,1	66
1984	50,4	34,2	15,1	20,7	48	13,7	7,9	35,1	24,8	53,3	51,1	74,7	74,7
1985	27,2	17,7	24,7	13,8	49,3	14,4	24,8	33,1	2,2	65	37,5	24,5	65
1986	50,2	20,3	21,8	51,5	17,9	31,2	5,4	31,5	40,7	14,2	48,2	27,4	51,5
1987	18,3	41,2	19,7	18,2	11,7	61,2	15,1	23,5	18,9	63,7	50,8	35,2	63,7
1988	39,5	25,5	22,6	31,6	22	21,7	24	15,9	26,4	12	8,3	39,5	39,5
1989	27,1	29,4	18,1	57,7	59,8	21	38	13	57,1	12,2	38,3	18,9	59,8
1990	30,9	21	16,5	42,9	84,7	24,5	23,9	32,5	34,8	49,1	37,4	48,8	84,7
1991	29,7	9,1	63,6	49,8	30,5	11,7	10,2	15,9	38,3	22,9	48,6	11	63,6
1992	38,4	21,3	19,8	16	27,4	60,2	23,3	54,1	47,3	49,8	19,5	38,4	60,2
1993	5,5	18,7	17,1	49,3	16,1	40,1	32,8	45	65	22,9	28,8	51,5	65
1994	34,6	59,5	38,5	55,6	26	42,6	28,8	13,1	75,6	55,8	18	52,8	75,6
1995	37,7	33,3	38,8	18,8	43,7	5,4	24	33,3	31	7,6	24,9	23,5	43,7
1996	33,3	42,2	26,6	27,2	22,4	21,8	18,4	51,2	19,8	32,6	49	45,9	51,2
1997	34,4	11,6	19,4	30,9	167,7	97	91,4	75,8	52,1	16,4	48,2	25,2	167,7
1998	24	25,1	23,2	44,8	32,5	15,6	29,1	32,5	25,3	60,2	25,6	14,6	60,2
1999	22,4	23,6	41,7	15,7	22,8	12,4	24,4	14,3	37,8	15,2	46,8	46,6	46,8
2000	13,7	18,1	44,2	44,8	27,4	22,3	54,1	23,6	25,6	67,5	29,7	19,2	67,5
2001	30,2	25,4	16,3	23,9	21,3	29,1	42,4	27,1	20,3	24,8	16,1	11	42,4
2002	13,6	37,4	12,4	32,8	56,2	23,6	13,8	127,6	12	51,3	31,5	48,2	127,6
2003	24,1	22	25,8	11,7	41,1	13,5	13,8	41,2	44,8	30,4	43,2	24,5	44,8
2004	64,3	22,1	18,4	27,5	24,3	19,6	23,9	55	35,4	46	30,4	26,9	64,3
2005	24,9	14,5	25,8	42,5	14,8	7,9	10	11,6	30,7	25,6	63,7	43	63,7

					PRECIPI	TACIÓN	MÁXIMA	DIARIA							
AÑO						MENS	SUAL						ANUAL		
ANO	ENE.														
2006	25,4														
2007	46,2														
2008	47	11,3	23,9	20,4	42,9	33,2	27,9	23,3	26	60	42,4	37,9	60		
N	30	30	30	30	30	30	30	30	30	30	30	30	30		
MEDIA	33,42	25,29	27,92	30,83	37,51	27,73	27,90	40,17	34,55	42,18	36,61	36,73	33,40		
MAX	73,7	59,5	63,6	57,7	167,7	97	91,4	131	100,4	135,1	76,5	88,7	167,7		
MIN	5,5	9,1	12,4	5,6	11,7	5,4	5,4	11,6	2,2	7,6	8,3	11	2,2		

				DÍAS	DE PRE	CIPITAC	IÓN MA	YOR DE	1 MM				
AÑO						MENS	UAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANOAL
1979	19	17	16	20	10	14	8	17	13	13	14	15	176
1980	13	9	14	7	15	13	11	10	7	15	10	16	140
1981	18	9	15	14	14	8	14	8	12	16	6	23	157
1982	13	12	15	2	12	12	12	14	8	19	14	18	151
1983	9	18	13	12	14	7	14	14	7	9	6	7	130
1984	21	16	15	6	19	11	6	13	17	9	17	15	165
1985	12	9	20	13	16	10	10	5	2	6	12	10	125
1986	26	14	15	24	12	12	4	12	11	9	11	17	167
1987	11	18	14	11	11	11	11	9	4	12	16	5	133
1988	22	17	14	14	15	16	12	13	7	7	4	9	150
1989	4	11	14	17	6	6	6	10	5	7	10	2	98
1990	12	7	8	22	9	14	9	6	9	16	16	12	140
1991	13	12	7	15	12	8	13	8	16	11	15	6	136
1992	6	5	16	14	9	16	11	9	10	20	11	10	137
1993	1	4	8	16	13	14	10	7	14	12	10	20	129
1994	15	13	13	15	12	8	11	9	19	12	9	12	148
1995	18	14	14	9	10	6	10	11	18	6	7	12	135
1996	11	21	8	11	11	8	7	16	9	15	21	12	150
1997	15	4	4	5	9	14	9	11	7	10	17	16	121
1998	8	4	7	17	11	13	10	6	11	19	19	13	138
1999	14	15	14	14	12	10	8	9	8	8	13	14	139
2000	3	12	10	17	13	8	13	13	8	20	19	9	145
2001	19	10	16	15	8	9	12	9	12	7	10	6	133
2002	7	13	9	16	16	14	13	14	6	12	14	14	148
2003	19	13	6	9	9	10	6	6	12	19	13	16	138
2004	19	11	11	14	10	7	8	11	13	13	9	18	144
2005	11	13	9	17	11	7	7	12	11	10	17	14	139
2006	12	9	16	9	10	9	8	9	11	9	8	8	118

				DÍAS	DE PRE	CIPITAC	IÓN MA	YOR DE	1 MM						
AÑO						MENS	UAL						ANUAL		
ANO	ENE.														
2007	11														
2008	11														
N	30	30	30	30	30	30	30	30	30	30	30	30	30		
MEDIA	13,10	11,80	12,60	13,53	12,03	10,87	9,80	10,57	10,23	12,07	12,50	12,53	141,63		
MAX	26	21	20	24	19	19	14	17	19	20	21	23	26		
MIN	1	4	4	2	6	6	4	5	2	6	4	2	1		

				DÍAS	DE PRE	CIPITACI	ÓN MAY	OR DE 10	MM (
AÑO						MENS	UAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANUAL
1979	13	5	10	10	5	3	1	4	3	7	7	7	75
1980	6	2	9	2	5	2	4	1	2	7	4	8	52
1981	11	5	3	3	2	1	4	3	5	8	0	14	59
1982	4	7	7	0	3	1	2	3	3	12	8	9	59
1983	1	7	7	6	3	4	5	8	1	3	1	2	48
1984	11	6	3	3	8	1	0	5	9	4	8	4	62
1985	6	3	10	2	7	2	3	3	0	1	7	5	49
1986	13	7	4	11	2	3	0	3	5	3	4	8	63
1987	7	9	4	5	1	3	5	4	1	6	8	1	54
1988	10	6	5	3	5	4	4	3	2	1	0	3	46
1989	2	5	2	12	1	1	2	3	4	1	5	1	39
1990	8	2	1	12	1	6	2	2	2	6	9	5	56
1991	2	0	3	8	5	1	1	1	7	6	11	1	46
1992	3	2	3	4	3	5	3	3	4	12	4	7	53
1993	0	2	3	6	4	2	3	2	5	5	5	6	43
1994	7	5	1	9	5	3	2	2	9	4	4	6	57
1995	8	4	4	3	4	0	4	4	8	0	3	5	47
1996	2	11	3	1	3	3	5	7	2	7	10	7	61
1997	4	1	1	3	6	7	4	2	3	3	9	7	50
1998	1	2	1	7	3	3	3	2	6	13	8	2	51
1999	4	4	7	4	7	1	1	2	4	2	9	8	53
2000	1	4	4	6	3	2	5	5	2	11	11	4	58
2001	5	3	5	2	3	1	6	2	2	2	6	1	38
2002	1	4	2	2	6	3	4	6	2	5	5	7	47
2003	6	3	4	1	4	3	1	2	3	9	3	7	46
2004	6	4	6	3	5	2	1	4	4	5	7	6	53
2005	3	2	3	6	2	0	1	1	5	2	9	7	41
2006	4	2	6	3	2	4	2	2	3	4	3	5	40

				DÍAS	DE PRE	CIPITACI	ÓN MAY	OR DE 10	MM						
AÑO						MENS	UAL						ANUAL		
ANO	ENE.														
2007	3														
2008	3														
N	30	30	30	30	30	30	30	30	30	30	30	30	30		
MEDIA	5,17	4,10	4,63	4,90	3,93	2,50	2,73	3,23	3,80	5,43	5,97	5,60	52		
MAX	13	11	11	12	8	7	6	8	9	13	11	14	14		
MIN	0	0	1	0	1	0	0	1	0	0	0	1	0		

				DÍAS	DE PREC	IPITACI	ÓN MAY	OR DE 3	0 MM				
AÑO						MENS	UAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANUAL
1979	5	1	1	2	0	0	1	1	0	0	5	1	17
1980	0	0	1	0	3	1	0	0	1	3	1	2	12
1981	2	0	0	1	0	0	1	1	0	1	0	1	7
1982	1	0	1	0	0	0	0	1	0	2	2	3	10
1983	0	0	0	0	0	0	1	6	0	1	0	0	8
1984	2	2	0	0	2	0	0	1	0	1	2	1	11
1985	0	0	0	0	3	0	0	1	0	1	2	0	7
1986	1	0	0	2	0	1	0	1	2	0	2	0	9
1987	0	2	0	0	0	1	0	0	0	2	2	1	8
1988	1	0	0	1	0	0	0	0	0	0	0	1	3
1989	0	0	0	1	1	0	1	0	1	0	2	0	6
1990	1	0	0	1	1	0	0	1	1	1	2	3	11
1991	0	0	1	1	1	0	0	0	3	0	1	0	7
1992	1	0	0	0	0	1	0	2	1	3	0	3	11
1993	0	0	0	1	0	1	1	1	3	0	0	3	10
1994	1	1	1	3	0	2	0	0	2	2	0	2	14
1995	1	1	1	0	1	0	0	1	1	0	0	0	6
1996	1	2	0	0	0	0	0	1	0	1	3	2	10
1997	1	0	0	1	2	3	2	1	1	0	3	0	14
1998	0	0	0	2	1	0	0	1	0	4	0	0	8
1999	0	0	1	0	0	0	0	0	2	0	1	2	6
2000	0	0	1	1	0	0	1	0	0	2	0	0	5
2001	1	0	0	0	0	0	1	0	0	0	0	0	2
2002	0	1	0	1	3	0	0	2	0	2	1	3	13
2003	0	0	0	0	2	0	0	1	1	1	2	0	7
2004	1	0	0	0	0	0	0	1	1	2	1	0	6
2005	0	0	0	1	0	0	0	0	1	0	3	2	7
2006	0	0	1	0	0	3	1	0	2	1	1	2	11

				DÍAS I	DE PREC	IPITACI	ÓN MAY	OR DE 3	0 MM						
AÑO						MENS	UAL						ANUAL		
ANO	ENE.														
2007	2														
2008	1														
N	30	30	30	30	30	30	30	30	30	30	30	30	30		
MEDIA	0,77	0,33	0,33	0,63	0,70	0,47	0,33	0,83	0,77	1,27	1,30	1,17	8,90		
MAX	5	2	1	3	3	3	2	6	3	6	5	3	6		
MIN	0	0	0	0	0	0	0	0	0	0	0	0	0		

Apéndice Nº 5 Análisis climatológico. Series de temperaturas.

Fuente: « Ministerio para la Transición Ecológica (MITECO)».

				Т	EMPERA	TURA M	ÁXIMA A	ABSOLU	ГА				
AÑO						MEN	SUAL						ANITAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANUAL
1979	14,6	20,4	20,4	19,6	28,8	25,2	29,8	26	30	27,4	23	22	30
1980	18	19,8	26,2	21	27	30	33	29	30,4	26,4	25,2	18,6	33
1981	16	15,2	24,6	21,4	29	29	35	33,8	30,4	26	20,6	19	35
1982	19,6	17,8	20,4	23,4	30	33,2	37,6	32,6	29,8	24,6	22,8	17,2	37,6
1983	18,6	17,6	22	23,8	27,2	31,4	30,8	29,2	31,2	28,6	20,6	21,2	31,4
1984	15,2	13,6	16,6	27,4	19,4	28	33,2	31,8	32	24	21,8	17,6	33,2
1985	15,4	20,4	18	26,6	28	26,4	34	28,8	31	30	24,6	21,6	34
1986	15	18	20,6	17	29	32,2	34	32,4	30	23,4	18,8	18	34
1987	18	20,4	19,8	26	26,2	29	26,6	32	35	23,6	20,2	21,6	35
1988	17,6	17,6	24,6	23,8	26	24,6	26	32,8	34	26,8	21,6	15	34
1989	16,6	22,6	26,2	19,2	28,4	28,6	35,4	26,8	29,2	27	21,4	21,6	35,4
1990	17,8	25	28	24	28,6	26	32,6	31,2	29,6	25,8	17,8	19,2	32,6
1991	18,4	19,4	22,6	24,8	29,8	24,8	35,4	35,8	29,6	19,8	20,4	16,2	35,8
1992	16,8	17,8	18	22,4	30	29,4	33,4	32,2	30	18,4	22,4	20	33,4
1993	19	16,6	23,6	25,4	27,8	29,2	31,6	34,2	27,2	24,2	20,2	18,2	34,2
1994	18,2	24	21,4	24,6	26,6	33,6	32,6	29,6	27,6	22,8	21	18,8	33,6
1995	18	20	20,6	25,6	28,2	26,6	36,2	27,8	27,4	27,2	22,2	18,4	36,2
1996	17,4	15,2	23,8	22,6	33,2	32,4	35	29,6	27	27,8	19,6	16,6	35
1997	17,8	22,2	24,4	22,2	27,4	30,6	25,6	30,2	28,8	27,2	20,4	18,2	30,6
1998	19,2	21,6	22,8	24,6	26,8	35,2	33,6	34	30,8	23,8	21,6	18,6	35,2
1999	21	17	24,2	22,6	30,8	27,6	32	27,8	31	27,6	22,8	18,4	32
2000	16,8	19,6	17,4	25	26	32,6	33,4	31,2	31,2	22,8	20,5	21,3	33,4
2001	19,4	19,5	22,4	25	31	26,6	27,2	31,2	26	29,8	20,3	17	31,2
2002	19,7	20,3	22,6	20,7	31,2	30,4	29,1	25	28,2	24,5	22,8	19,5	31,2
2003	19	16,8	24,5	27,4	28,6	38	27,5	38,6	30,8	24,9	22,2	17	38,6
2004	17,2	22,7	23,9	22,6	27,6	31,6	29,8	34,2	32	28,2	18,6	15,8	34,2
2005	15,8	13,5	25,5	29,4	33	35	32,8	34	34	25	21	15,5	35
2006	11,6	15,4	24,4	26	32,5	33	36	26,9	29,8	26,8	21,1	19,2	36

				Т	EMPERA	TURA M	ÁXIMA A	ABSOLU	ГА						
AÑO						MENS	SUAL						ANUAL		
ANO	ENE.														
2007	20	7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,													
2008	16,8														
N	30	30	30	30	30	30	30	30	30	30	30	30	30		
MEDIA	17,48	19,08	22,56	23,85	28,46	30,06	32,19	31,19	30,11	25,40	21,05	18,43	32,19		
MAX	21	25	28	29,4	33,2	38	37,6	38,6	35	30	25,2	22	38,6		
MIN	11,6	13,5	16,6	17	19,4	24,6	25,6	25	26	18,4	17,2	15	11,6		

				Т	EMPERA	ATURA N	IÍNIMA A	BSOLUT	A				
AÑO						MEN	SUAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANUAL
1979	-1,4	-2,8	1,4	2,4	5,4	10,2	11,2	11,6	8,6	7,2	0,4	-1,6	-2,8
1980	-4,6	2,4	1	3	6,4	8,2	10,4	13	12,6	4,4	-1	-2,6	-4,6
1981	-0,6	-1,8	1,6	2,4	6,2	8,6	11	13,8	8,6	6,2	3	0,4	-1,8
1982	1,8	3	3,6	2,8	3	10,6	13	12	11,2	6,8	2,2	0,4	0,4
1983	-1	-5	2,8	4	6	10,6	13,4	13,8	10	6	5	0,4	-5
1984	0	-0,6	-1	2,2	4,6	6,6	12,4	13,6	9,8	7,8	4,4	-1,6	-1,6
1985	-10	0,6	0,4	4,8	2,8	10	14	10,8	11	7,8	-3	-3,6	-10
1986	1,4	-5,8	2	-0,4	4,4	8,6	13,6	10	11,6	6,2	2,6	0,2	-5,8
1987	-3,8	-3	1,6	4,6	4,6	8,6	12,4	12,4	10	7,4	0,6	1	-3,8
1988	4	-1	-1	6	9,2	9,6	12,2	11	8,6	8,8	-3,4	0,2	-3,4
1989	-1,4	1,4	3,6	2,8	7,8	9	13,6	13,6	9,6	8,4	5,4	7,4	-1,4
1990	2,6	4,4	-0,2	3,6	10,4	11	11,4	11,4	11,4	8	1,8	-1,4	-1,4
1991	-1,4	-1,2	5	2,6	4,2	9	11,4	14,2	11,2	3,4	1	2	-1,4
1992	-3	0,6	2,4	4,2	6,2	8,8	12	11,8	9,2	6,2	7,4	1,8	-3
1993	2,4	-2,4	-2	4	7	10,6	10	12,2	8,6	4,8	2	3,8	-2,4
1994	-2,6	0,4	4,8	2,2	6,6	10,4	14,4	14,6	9,8	7,4	7,6	0,4	-2,6

				Т	EMPERA	ATURA N	IÍNIMA A	BSOLUT	A				
AÑO						MEN	SUAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANUAL
1995	-1,4	2	2,8	2,8	5,4	10,8	13,2	12	9,6	8,8	3,2	-2	-2
1996	5	-3,2	1,4	1,6	6,2	10,4	12,4	13	10,2	7,6	1,6	-2,4	-3,2
1997	0,4	2,6	5,4	5,8	4,8	9,4	11,4	14	11	7	6	-0,4	-0,4
1998	-1,8	1,6	4,2	2	8,2	9,8	13,4	11,6	11	8	-0,5	1	-1,8
1999	-2,2	-1,6	0,2	2,4	10	11	14,6	15,6	12,4	6,8	-0,8	-0,4	-2,2
2000	-1,6	3,6	2,4	3,4	9,4	11	12,2	13,2	10,6	8,2	4,8	2	-1,6
2001	4	0,4	3,8	3,6	5,6	11,4	12	13	10,2	10,6	1	-5,6	-5,6
2002	1,8	3,6	4	4,2	6,2	9,5	11,6	12,4	8	8,5	6,6	4,2	1,8
2003	-1,5	-4	5,5	4,6	8,1	13,5	13,4	15,6	11,2	1,2	4,5	2,2	-4
2004	1,9	-0,8	-0,6	3,2	5,8	11,8	12,8	13,8	11,5	8,5	3	0,3	-0,8
2005	-1,8	-3,9	-4,7	3,1	8,4	12,4	13,2	13,4	10	9,7	1,8	-0,4	-4,7
2006	-1,6	2	2,1	4,5	6,6	9,5	15	13,2	12,2	11,6	5,4	-0,8	-1,6
2007	-3,2	4	1,8	4,4	7,3	10,6	12,7	12,3	8	6	-1,4	0,6	-3,2
2008	1	2	1	3,8	6	10	11,2	12,1	9,6	4	1,1	0,4	0,4
N	30	30	30	30	30	30	30	30	30	30	30	30	30
MEDIA	-0,62	-0,08	1,84	3,35	6,43	10,05	12,52	12,83	10,24	7,11	2,41	0,20	-0,62
MAX	5	4,4	5,5	6	10,4	13,5	15	15,6	12,6	11,6	7,6	7,4	15,6
MIN	-10	-5,8	-4,7	-0,4	2,8	6,6	10	10	8	1,2	-3,4	-5,6	-10

					TEMPER	ATURA	MEDIA N	IENSUAL					
AÑO						MENS	SUAL						ANUAL
	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	
1979	7,7	8,5	9	9,7	12,9	15,5	18,1	17,6	17,4	15,4	10	10,2	12,67
1980	7,1	9,9	8,7	9,6	11,8	15	16,4	19	18,6	14,5	10,8	7	12,37
1981	6,9	6,8	12,6	10,7	13,6	16,4	17	19,1	17,9	14,7	11,6	9,1	13,03
1982	10,6	9,4	8,8	10,5	14	17,4	19,1	18	19,2	14,4	11,7	8,4	13,46
1983	9,2	6,8	9,6	11,9	12,8	16,9	20	18,8	18,6	15,6	14,2	9,3	13,64
1984	8,2	6,2	7,4	12,6	10,5	15,6	18,8	18,3	16,6	14,6	12,4	8,6	12,48
1985	4	10,7	7,5	11,5	12,3	16,3	19,1	18	19,4	15,9	8,3	9,9	12,74
1986	7,9	6,9	9,5	7,3	13,7	15,7	17,9	18	17,3	15,4	11,2	9,5	12,53
1987	5,8	7,6	9,5	13,4	12,6	15,3	18,1	19,2	20,2	15,7	10,8	11,3	13,29
1988	10,3	8,4	8,9	12	14,3	16,3	17,8	18,8	17,2	16,7	12,5	8	13,43
1989	8,3	9,8	11,7	9,6	16,8	17,4	20,2	19,7	17,5	16,5	13,9	13,4	14,57
1990	9,2	13,1	11,9	10	16,5	16,3	19,7	20,5	18,7	15,9	10	5,7	13,96
1991	7,6	7,4	11,3	9,5	12,1	15,3	18,7	20,6	19,5	12,6	11	8,8	12,87
1992	6,3	8,6	9,1	10,5	16	14,5	19,1	20	17,1	12,1	13,4	9,4	13,01
1993	10,3	8	9,9	11,3	14,7	16,7	17,2	19,5	16,3	13,3	10,2	10,4	13,15
1994	8	9,5	11,3	9,8	14,7	16,7	19,6	20,2	16,2	15,4	13,3	10,3	13,75
1995	8,6	10,4	9,6	10,6	15,4	16,2	20,2	19,6	16	18,4	12,5	10	13,96
1996	11,5	6,6	10,4	11,6	13,9	17,6	18,9	18,4	16,1	14,8	10,6	8,9	13,28
1997	8,7	12	12	12,3	16,2	16,9	17,8	20,9	19,2	17,5	12,4	9,4	14,61
1998	9,9	11,1	11,1	11	14,6	17,1	18,4	19,8	18,4	14,1	9,9	8,9	13,69
1999	9,3	6,9	10,4	12,1	16,1	16,4	19,3	20,2	19,7	15,8	8,9	8,5	13,63
2000	6,8	10,2	9,3	11,9	15,6	17,7	18,7	19,5	18,5	14,2	11	12,2	13,80
2001	10	8,8	13,6	11	14,6	16,9	18,3	20,5	17,1	18,7	8,7	6,5	13,73
2002	11	10,2	11,6	11,3	13,9	16	17,5	17,8	17,9	16	12,7	11,8	13,98
2003	7,5	7,5	13,1	13,4	14,7	20	19,5	22,7	19,1	13,9	13	9,7	14,51
2004	9,2	8,1	8,7	11	13,8	18,7	18,5	20,7	18,8	16,6	9,9	8,7	13,56
2005	7,7	5,4	10,8	12,1	15,4	19,2	19,8	19,5	17,6	17,6	10	6	13,43
2006	6,9	6,5	11,8	11,8	15,4	18,6	21,7	19,1	19,7	18,6	14,2	8,5	14,40

				,	TEMPER	ATURA	MEDIA N	IENSUAL	-						
AÑO						MENS	SUAL						ANUAL		
	ENE.														
2007	9,2														
2008	9,9	11,8	9,5	11,7	15,5	16,7	18,4	19,1	17,1	14	9,6	7,6	13,41		
N	30	30	30	30	30	30	30	30	30	30	30	30	30		
MEDIA	8,45	8,81	10,28	11,15	14,29	16,75	18,75	19,40	17,98	15,43	11,25	9,15	13,47		
MAX	11,5	13,1	13,6	13,4	16,8	20	21,7	22,7	20,2	18,7	14,2	13,4	22,70		
MIN	4	5,4	7,4	7,3	10,5	14,5	16,4	17,6	16	12,1	8,3	5,7	4		

					TEMPE	RATURA	MÁXIM	A MEDIA					
AÑO						MEN	SUAL						ANUAL
	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.	
1979	10,5	11,4	12,2	12,2	16,4	18,1	21,1	20,6	20,3	18,6	12,9	13,2	15,63
1980	10,1	13	11,9	12,5	14,7	18,4	20,1	22,1	22,1	17,7	14,3	9,7	15,55
1981	9,1	9,6	16,5	13,8	17,4	20,1	20,3	22	21,6	18,1	14,5	11,8	16,23
1982	12,9	12	11,6	13,4	17,6	21,3	22,3	20,9	22,7	17,4	14,3	10,9	16,44
1983	12,2	9,5	12,5	15,9	16,4	20,2	22,6	21,1	22,2	19,1	16,6	12	16,69
1984	10,6	8,4	10,4	15,8	13,4	18,8	22,2	21,3	19,6	17,8	14,9	11,4	15,38
1985	7	14	10,4	15,1	15,3	19,2	22,1	21,4	23	19,1	11,3	12,6	15,88
1986	10,3	9,5	12,8	10,2	17,6	18,6	20,5	21,4	20	18,1	14,1	12,1	15,43
1987	8,6	10,1	12,6	17,1	15,6	18,4	20,3	22,3	24,1	19,2	13,5	13,8	16,30
1988	13,1	11,2	12	14,9	17,2	19	21,2	21,7	20,4	19,8	15,5	10,5	16,38
1989	11	12,9	15,1	12,8	20	20,5	23,3	22,5	20,7	19,6	16,5	15,9	17,57
1990	12,2	16,3	15,3	12,6	19,6	19,2	23,2	23,8	21,8	19,3	12,3	8,3	16,99
1991	10,2	10,2	14,1	12,6	14,5	18	21,8	23,7	22,9	15,5	13,7	11,2	15,70
1992	8,7	11,4	11,6	13,2	19,8	17,2	22,2	23,4	20,6	14,4	16,1	11,6	15,85
1993	13	10,4	13	14,8	18,2	19,3	19,8	22,5	19,3	16,2	13	13	16,04
1994	10,5	12,7	13,9	12,6	18,5	20	22	22,8	19	18,1	15,7	12,3	16,51
1995	11,4	13,7	12,5	13,3	18,7	18,8	23,4	21,9	18,9	21,9	15,6	12,6	16,89

					TEMPE	RATURA	MÁXIM	A MEDIA					
AÑO						MEN	SUAL						ANUAL
	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	
1996	14	9,4	13,4	14,7	17,5	20,4	21,4	20,8	18,9	17,5	13,2	11	16,02
1997	11	15,5	15,2	15,3	20,2	20,3	20	23,9	22,2	20,4	15,1	12,2	17,61
1998	12,6	14	14,2	14,8	17,5	20,4	21,2	22,7	21,8	17	12,5	11,4	16,68
1999	11,8	9	13,2	15,4	19,8	19,3	21,9	23,2	23,4	18,7	11,3	11,5	16,54
2000	9	12,9	12	15,5	19	21,1	22	22,6	21,7	17	13,7	14,6	16,76
2001	12,4	11,3	17,2	14	17,7	19,8	20,9	23,7	20	22,6	11	9,2	16,65
2002	13,6	12,9	14,5	14,4	17,8	18,7	20,2	19,9	21,1	19,2	15,4	13,9	16,80
2003	10	10	16,4	16,9	18,2	23,5	22,1	26,1	22,1	16,7	15,7	12,2	17,49
2004	11,6	10,7	11,9	13,7	16,6	21,8	21,2	24,3	21,7	20	12,1	10,6	16,35
2005	10,4	7,8	14,5	15,6	19	22,5	22,7	22,4	20,4	20,7	12,5	8,1	16,38
2006	8,8	9	15,3	14,7	19,1	22	24,6	21,6	22,9	21,8	17,1	11,4	17,36
2007	11,6	14,4	12,4	15,7	17,4	20,5	22	22	19,3	16,5	11,2	11	16,17
2008	12,6	14,8	12,3	15,2	19,1	19,3	21,8	22,5	20,2	17,2	11,9	9,9	16,40
N	30	30	30	30	30	30	30	30	30	30	30	30	30,00
MEDIA	11,03	11,60	13,36	14,29	17,66	19,82	21,68	22,37	21,16	18,51	13,92	11,66	16,42
MAX	14	16,3	17,2	17,1	20,2	23,5	24,6	26,1	24,1	22,6	17,1	15,9	26,10
MIN	7	7,8	10,4	10,2	13,4	17,2	19,8	19,9	18,9	14,4	11	8,1	7,00

					TEMPE	RATURA	MÍNIMA	MEDIA					
AÑO						MENS	SUAL						ANUAL
	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	
1979	4,8	5,7	5,8	7,2	9,3	12,8	15,1	14,7	14,6	12,1	7,2	7,3	9,72
1980	4,1	6,7	5,5	6,8	9	11,7	12,8	15,9	15	11,3	7,4	4,2	9,20
1981	4,6	3,9	8,7	7,7	9,8	12,7	13,7	16,1	14,3	11,3	8,8	6,5	9,84
1982	8,2	6,8	6,1	7,6	10,4	13,5	15,9	15,1	15,6	11,4	9,2	6	10,48
1983	6,3	4,1	6,6	7,9	9,3	13,7	17,5	16,5	15,1	12,1	11,8	6,7	10,63
1984	5,7	3,9	4,3	9,4	7,7	12,5	15,4	15,4	13,6	11,3	9,8	5,9	9,58
1985	1,1	7,4	4,6	7,9	9,2	13,3	16	14,7	15,7	12,8	5,3	7,2	9,60
1986	5,6	4,4	6,3	4,4	9,9	12,7	15,3	14,5	14,6	12,8	8,3	6,9	9,64
1987	2,9	5,1	6,4	9,8	9,6	12,2	15,8	16,1	16,4	12,2	8	8,7	10,27
1988	7,5	5,5	5,9	9	11,4	13,6	14,4	16	14	13,5	9,5	5,6	10,49
1989	5,6	6,8	8,3	6,5	13,5	14,4	17,1	16,9	14,3	13,5	11,2	10,9	11,58
1990	6,3	9,8	8,4	7,4	13,4	13,4	16,3	17,2	15,6	12,5	7,8	3,1	10,93
1991	4,9	4,6	8,5	6,3	9,7	12,6	15,6	17,4	16,2	9,6	8,4	6,4	10,02
1992	3,8	5,7	6,5	7,8	12,2	11,9	15,9	16,5	13,7	9,8	10,7	7,2	10,14
1993	7,7	5,5	6,8	7,8	11,2	14	14,6	16,5	13,3	10,5	7,4	7,7	10,25
1994	5,4	6,2	8,6	7,1	10,8	13,4	17,1	17,5	13,3	12,7	10,9	8,2	10,93
1995	5,9	7	6,6	7,8	12,1	13,7	16,9	17,4	13	15	9,3	7,5	11,02
1996	9	3,7	7,4	8,6	10,4	14,9	16,3	15,9	13,2	12,1	8	6,8	10,53
1997	6,4	8,4	8,8	9,3	12,3	13,6	15,6	17,9	16,1	14,6	9,7	6,7	11,62
1998	7,2	8,2	8	7,3	11,8	13,7	15,6	16,8	15	11,1	7,3	6,5	10,71
1999	6,8	4,8	7,5	8,8	12,3	13,5	16,7	17,3	16,1	12,8	6,5	5,6	10,73
2000	4,5	7,5	6,7	8,2	12,3	14,3	15,4	16,4	15,2	11,4	8,2	9,8	10,83
2001	7,6	6,2	10	7,9	11,4	13,9	15,6	17,2	14,1	14,9	6,4	3,8	10,75
2002	8,2	7,5	8,6	8,2	10,1	13,2	14,8	15,6	14,6	12,9	9,9	9,6	11,10
2003	4,9	4,9	9,7	9,8	11,2	16,5	16,8	19,3	16,1	11	10,2	7,3	11,48
2004	6,8	5,5	5,5	8,2	11	15,4	15,8	17	15,9	13,2	7,5	6,7	10,71
2005	5	2,9	7,1	8,5	11,8	15,8	16,9	16,5	14,7	14,4	7,5	3,9	10,42
2006	4,9	4,1	8,3	8,9	11,7	15,2	18,6	16,5	16,4	15,3	11,2	5,6	11,39

					TEMPE	RATURA	MÍNIMA	MEDIA							
AÑO						MENS	SUAL						ANUAL		
	ENE.														
2007	6,8														
2008	7,1	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,													
N	30	30	30	30	30	30	30	30	30	30	30	30	30,00		
MEDIA	5,85	5,99	7,17	8,01	10,94	13,67	15,79	16,41	14,78	12,35	8,56	6,65	10,51		
MAX	9	9,8	10	10	13,5	16,5	18,6	19,3	16,4	15,3	11,8	10,9	19,30		
MIN	1,1	2,9	4,3	4,4	7,7	11,7	12,8	14,5	13	9,6	5,3	3,1	1,10		

Apéndice Nº 6

Análisis climatológico. Series de diversos fenómenos meteorológicos.

Fuente: « Ministerio para la Transición Ecológica (MITECO)».

				DIA	S DE PR	ECIPITA	CIÓN A	PRECIA	BLE				
AÑO						MENS	SUAL						ANILIAI
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANUAL
1979	21	19	21	22	13	17	13	19	16	16	17	16	17,5
1980	17	12	19	9	19	19	15	12	13	17	13	18	15,25
1981	19	16	17	16	22	9	19	9	15	17	6	27	16
1982	17	14	21	2	13	13	13	17	12	20	17	21	15
1983	10	19	19	16	20	9	18	22	9	11	12	11	14,67
1984	24	16	18	11	25	16	7	16	18	10	18	17	16,33
1985	21	10	22	14	18	16	16	10	4	8	14	12	13,75
1986	27	19	22	24	17	15	11	14	15	12	12	21	17,42
1987	14	25	16	12	18	16	17	17	10	19	18	9	15,92
1988	24	18	16	21	20	21	17	20	12	10	6	12	16,42
1989	6	12	16	23	12	8	14	11	8	8	15	6	11,58
1990	15	9	10	23	11	20	10	8	16	17	23	13	14,58
1991	15	15	13	20	17	16	20	8	16	19	17	8	15,33
1992	11	5	20	15	12	21	14	15	11	23	15	15	14,75
1993	1	6	11	20	16	19	14	9	16	19	11	26	14
1994	22	19	17	19	16	10	16	13	23	16	11	17	16,58
1995	21	18	16	11	16	12	13	14	23	9	11	16	15
1996	15	22	9	14	13	14	15	21	15	17	21	17	16,08
1997	20	10	5	6	18	19	16	16	8	10	22	20	14,17
1998	16	9	10	25	17	16	17	13	17	21	19	14	16,17
1999	15	19	17	21	18	17	13	16	14	14	14	21	16,58
2000	6	17	11	23	20	14	15	18	12	22	23	15	16,33
2001	19	14	23	17	9	14	16	19	16	10	16	10	15,25
2002	12	16	10	18	21	16	18	20	8	16	22	16	16,08
2003	24	16	8	13	10	13	9	10	16	25	17	20	15,08
2004	22	13	17	19	13	10	12	16	14	15	10	20	15,08
2005	14	17	11	18	15	12	11	14	17	12	18	16	14,58
2006	16	11	20	17	16	10	14	18	14	15	14	10	14,58

				DIA	S DE PR	ECIPITA	CIÓN A	PRECIA	BLE						
AÑO						MENS	SUAL						ANUAL		
ANO	ENE.														
2007	14	4 21 18 17 22 15 20 16 14 13 10 12													
2008	14														
N	30	30	30	30	30	30	30	30	30	30	30	30	30		
MEDIA	16,4	14,8	15,83	16,9	16,6	14,93	14,63	14,93	13,83	15,23	15,47	15,9	185,47		
MAX	27	25	23	25	25	21	20	22	23	25	23	27	27		
MIN	1	5	5	2	9	8	7	8	4	8	6	6	1		

						DÍAS D	E NIEVE						
AÑO						MEN	SUAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANUAL
1979	0	1	1	0	0	0	0	0	0	0	0	2	4
1980	2	0	0	0	0	0	0	0	0	0	3	2	7
1981	3	2	0	0	0	0	0	0	0	0	0	0	5
1982	1	0	0	0	0	0	0	0	0	0	0	0	1
1983	0	6	0	0	0	0	0	0	0	0	0	0	6
1984	0	2	1	0	0	0	0	0	0	0	0	0	3
1985	8	0	0	0	0	0	0	0	0	0	3	0	11
1986	0	0	0	4	0	0	0	0	0	0	0	1	5
1987	5	5	0	0	0	0	0	0	0	0	0	0	10
1988	0	2	2	0	0	0	0	0	0	0	0	0	4
1989	0	1	0	0	0	0	0	0	0	0	0	0	1
1990	0	0	0	0	0	0	0	0	0	0	0	0	0
1991	0	3	0	0	0	0	0	0	0	0	0	0	3
1992	2	0	0	0	0	0	0	0	0	0	0	0	2
1993	0	1	1	0	0	0	0	0	0	0	0	0	2
1994	0	1	0	0	0	0	0	0	0	0	0	1	2
1995	0	0	0	0	0	0	0	0	0	0	0	1	1

						DÍAS D	E NIEVE						
AÑO						MEN	SUAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANUAL
1996	0	1	0	0	0	0	0	0	0	0	0	1	2
1997	0	0	0	0	0	0	0	0	0	0	0	1	1
1998	1	0	0	0	0	0	0	0	0	0	1	1	3
1999	1	1	0	0	0	0	0	0	0	0	2	0	4
2000	0	0	0	0	0	0	0	0	0	0	0	0	0
2001	0	3	0	0	0	0	0	0	0	0	0	1	4
2002	0	0	0	0	0	0	0	0	0	0	0	0	0
2003	2	2	0	0	0	0	0	0	0	0	0	0	4
2004	1	3	1	0	0	0	0	0	0	0	0	0	5
2005	2	10	2	0	0	0	0	0	0	0	0	1	15
2006	2	0	0	0	0	0	0	0	0	0	0	0	2
2007	1	0	0	0	0	0	0	0	0	0	0	0	1
2008	0	0	0	0	0	0	0	0	0	0	0	0	0
N	30	30	30	30	30	30	30	30	30	30	30	30	30
MEDIA	1,03	1,47	0,27	0,13	0,00	0,00	0,00	0,00	0,00	0,00	0,30	0,40	3,60
MAX	8	10	2	4	0	0	0	0	0	0	3	2	10
MIN	0	0	0	0	0	0	0	0	0	0	0	0	0

					Di	ÁS DE C	GRANIZ	0					
AÑO						MENS	UAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANOAL
1979	3	1	3	3	0	0	0	0	1	0	5	1	17
1980	0	2	4	0	0	0	0	1	0	4	3	4	18
1981	1	5	2	3	1	0	0	0	0	1	0	1	14
1982	1	3	2	0	0	0	0	0	0	1	5	5	17
1983	0	3	2	2	0	0	0	0	0	0	0	0	7
1984	6	6	1	0	2	1	0	0	0	2	0	2	20
1985	0	1	4	0	2	1	1	0	0	0	0	1	10
1986	5	0	2	3	0	0	0	1	0	0	1	1	13
1987	1	2	5	1	1	0	0	0	0	0	6	0	16
1988	3	4	2	0	0	0	0	2	1	0	0	3	15
1989	0	0	0	5	0	0	1	0	0	0	1	0	7
1990	0	0	2	4	0	0	0	0	0	0	2	2	10
1991	2	2	1	4	4	0	0	0	0	1	2	0	16
1992	0	1	5	3	1	0	1	0	0	0	0	1	12
1993	0	2	0	0	0	0	0	0	0	0	0	0	2
1994	3	2	1	3	1	0	0	0	0	0	0	1	11
1995	4	0	3	3	0	0	2	0	0	0	0	0	12
1996	0	6	0	0	0	0	0	1	0	2	2	0	11
1997	0	0	1	0	1	0	0	0	0	0	0	2	4
1998	0	2	1	6	0	0	0	0	0	2	2	1	14
1999	0	1	3	3	0	0	0	0	0	0	2	2	11
2000	0	0	0	2	1	0	0	0	0	0	1	0	4
2001	0	0	0	1	0	0	0	0	0	0	1	0	2
2002	0	2	0	0	1	0	0	0	0	0	2	1	6
2003	1	0	0	0	0	0	1	0	0	1	2	2	7
2004	1	3	3	1	1	0	0	0	1	0	3	2	15
2005	3	1	2	2	0	0	0	0	0	0	1	1	10
2006	0	1	2	0	1	0	0	0	0	0	0	1	5

DÍAS DE GRANIZO															
AÑO						MENS	UAL						ANUAL		
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANOAL		
2007	3	0 3 0 0 0 0 0 0 0 2													
2008	0	0	4	0	0	1	0	0	0	0	0	3	8		
N	30	30	30	30	30	30	30	30	30	30	30	30	30		
MEDIA	1,23	1,67	1,93	1,63	0,57	0,10	0,20	0,17	0,10	0,47	1,37	1,30	10,73		
MAX	6	6	5	6	4	1	2	2	1	4	6	5	6		
MIN	0	0	0	0	0	0	0	0	0	0	0	0	0		

DÍAS DE TORMENTA													
AÑO						MEN	SUAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANUAL
1979	3	3	4	6	2	2	5	2	4	4	5	3	43
1980	0	0	2	0	1	4	4	1	4	5	3	1	25
1981	1	3	3	6	5	0	6	3	0	2	0	4	33
1982	1	1	0	0	4	5	6	3	1	4	3	6	34
1983	0	3	4	3	2	4	8	8	1	1	0	1	35
1984	2	2	3	0	4	5	3	5	2	4	1	1	32
1985	2	1	1	2	2	2	5	1	0	1	0	1	18
1986	2	0	1	5	4	3	2	2	5	1	0	1	26
1987	1	1	1	1	1	2	2	8	1	5	4	0	27
1988	2	3	2	4	6	6	3	2	2	1	0	2	33
1989	0	1	0	5	6	1	4	8	0	0	1	0	26
1990	0	1	0	5	5	5	5	5	6	1	5	2	40
1991	1	1	1	2	2	1	6	2	10	2	4	0	32
1992	1	1	4	2	5	5	2	7	2	3	0	0	32
1993	0	3	0	8	5	8	3	6	4	1	0	0	38
1994	4	1	0	1	4	6	6	3	4	2	0	0	31
1995	2	3	2	1	3	4	4	4	1	1	0	1	26
1996	0	5	1	1	2	2	1	3	3	2	2	0	22
1997	2	1	0	0	8	4	6	10	2	2	4	2	41
1998	1	1	1	6	2	3	7	2	4	5	3	1	36
1999	0	1	3	2	4	2	4	4	4	2	2	3	31
2000	0	0	0	0	4	4	1	5	3	1	1	0	19
2001	2	1	1	0	1	0	3	3	1	2	2	0	16
2002	0	2	0	0	3	3	2	2	0	1	1	1	15
2003	1	0	2	0	1	5	2	3	2	4	2	1	23
2004	2	2	2	2	0	2	3	4	6	2	1	1	27
2005	3	2	3	4	3	2	0	3	2	2	2	1	27
2006	1	1	3	3	3	3	5	1	3	3	0	2	28

2007	3	1	3	2	3	2	1	1	2	1	0	1	20
2008	2	0	3	0	4	8	0	2	1	1	1	0	22
N	30	30	30	30	30	30	30	30	30	30	30	30	30
MEDIA	1,30	1,50	1,67	2,37	3,30	3,43	3,63	3,77	2,67	2,20	1,57	1,20	28,60
MAX	4	5	4	8	8	8	8	10	10	5	5	6	10
MIN	0	0	0	0	0	0	0	1	0	0	0	0	0

DÍAS DE NIEBLA													
AÑO						MENS	UAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANUAL
1979	11	5	5	6	8	13	7	9	12	6	6	3	91
1980	9	4	8	4	10	4	5	11	14	5	3	6	83
1981	17	7	3	16	7	10	15	11	7	6	6	2	107
1982	9	5	3	2	11	13	7	9	10	11	8	12	100
1983	6	9	14	4	11	9	17	14	8	8	8	6	114
1984	6	6	2	6	4	13	6	9	11	6	7	6	82
1985	10	5	5	7	12	10	15	4	6	4	8	4	90
1986	6	4	9	11	13	14	9	5	8	12	7	3	101
1987	13	14	9	8	8	11	17	14	10	5	11	4	124
1988	8	7	7	12	12	11	7	14	12	5	6	6	107
1989	7	3	13	7	10	7	8	7	7	7	5	2	83
1990	5	3	5	13	11	16	6	9	6	7	10	7	98
1991	10	6	10	12	10	12	14	13	9	5	9	6	116
1992	5	3	14	13	6	13	17	12	7	15	13	6	124
1993	3	2	9	9	10	13	14	6	8	4	9	9	96
1994	6	6	20	11	12	14	15	11	12	7	7	12	133
1995	9	8	12	6	7	6	13	8	13	10	4	8	104
1996	1	6	2	9	10	13	8	11	7	7	13	10	97
1997	14	6	10	10	9	13	12	14	10	9	5	5	117
1998	3	4	6	8	15	8	12	10	10	12	7	6	101
1999	10	11	9	9	9	6	6	8	5	7	14	8	102
2000	6	15	7	6	16	10	7	10	9	7	1	1	95
2001	2	4	3	4	8	3	12	5	4	1	6	6	58
2002	4	3	8	6	5	15	11	9	2	8	5	4	80
2003	4	4	9	6	6	16	4	6	10	6	2	7	80
2004	9	7	5	6	12	9	6	10	10	5	9	9	97
2005	4	8	1	11	10	11	7	5	10	4	10	12	93
2006	11	5	6	10	13	14	7	6	10	7	6	7	102

DÍAS DE NIEBLA													
AÑO						MENS	SUAL						ANUAL
ANO	ENE. FEB. MAR. ABR. MAY. JUN. JUL. AGO. SEP. OCT. NOV. DIC.												
2007	10 4 9 21 13 9 12 7 7 11 5 8												
2008	10	5	8	13	13	12	9	5	4	9	14	14	116
N	30	30	30	30	30	30	30	30	30	30	30	30	30
MEDIA	7,60	5,97	7,70	8,87	10,03	10,93	10,17	9,07	8,60	7,20	7,47	6,63	100,23
MAX	17	15	20	21	16	16	17	14	14	15	14	14	21
MIN	1	2	1	2	4	3	4	4	2	1	1	1	1

HUMEDAD RELATIVA													
AÑO						MEN	SUAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ANUAL
1979	79	76	75	78	77	85	81	85	87	74	76	70	78,58
1980	77	70	77	72	84	78	80	85	83	80	70	76	77,67
1981	88	78	65	84	72	79	85	86	81	78	79	75	79,17
1982	73	74	80	76	79	80	83	84	72	79	73	83	78,00
1983	72	78	82	63	77	78	90	88	78	75	76	73	77,50
1984	78	81	74	68	82	83	80	84	79	74	75	79	78,08
1985	78	69	75	76	82	83	84	82	77	79	76	68	77,42
1986	83	79	81	87	84	86	84	83	87	86	74	72	82,17
1987	77	82	75	72	80	81	87	84	73	72	78	70	77,58
1988	74	67	76	80	79	83	78	82	77	66	69	77	75,67
1989	73	71	71	76	73	77	80	83	79	68	68	56	72,92
1990	71	67	62	83	76	83	74	78	78	70	81	78	75,08
1991	73	74	73	77	83	81	84	83	79	74	74	74	77,42
1992	74	67	80	81	72	84	84	80	80	88	77	79	78,83
1993	68	70	75	76	78	89	86	82	78	74	79	81	78,00
1994	77	71	84	80	79	82	87	87	81	80	80	80	80,67
1995	73	75	74	80	75	81	83	85	79	70	70	75	76,67
1996	64	79	68	79	74	81	83	86	82	78	83	78	77,92
1997	80	69	77	76	73	78	88	85	81	76	74	72	77,42
1998	67	68	75	74	79	80	82	81	77	81	79	73	76,33
1999	72	84	76	78	80	83	87	84	75	75	78	76	79,00
2000	74	81	79	70	81	79	82	85	79	81	73	62	77,17
2001	71	74	70	75	80	79	84	82	73	62	80	75	75,42
2002	65	73	73	79	75	87	86	87	77	75	73	70	76,67
2003	76	73	66	67	76	84	79	78	73	79	72	75	74,83
2004	78	76	73	77	80	81	84	75	81	72	82	83	78,50
2005	74	75	61	77	76	80	76	78	80	67	77	83	75,33
2006	82	79	72	80	78	79	83	77	79	71	71	73	77,00

HUMEDAD RELATIVA															
AÑO						MEN	SUAL						ANUAL		
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	7111071=		
2007	79														
2008	78	65	79	77	80	88	81	82	79	80	82	84	79,58		
N	30	30	30	30	30	30	30	30	30	30	30	30	30,00		
MEDIA	74,93	73,90	74,17	76,80	78,27	81,77	82,83	82,70	78,80	75,57	75,87	74,87	77,54		
MAX	90	84	84	87	84	89	90	88	87	88	83	84	90,00		
MIN	64	65	61	63	72	77	74	75	72	62	68	56	56		

	INSOLACIÓN												
AÑO						MEN	SUAL						ANILIAI
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.	ANUAL
1979		61,9	104,9	73	180,4	147,1					109,8	98,1	775,20
1980	72,3	99,3	69,4	107,3	71,6	140,4	193,3	189,7	150,6	95	120,9	100	1409,80
1981	79	108,2	119,2	100,1	165,3	227	163,3	187,7	150,7	98	142,8	34,6	1575,90
1982	57,2	78,9	136,5	172,1	184,1	150,6	154,4	134,1	166	77,2	89,4		1400,50
1983	89,7	63,1	78,6	113,3	122,1	156,6	77,7	125,8	171,8	136,3	63,4	83,2	1281,60
1984	60,8	59,8	123,1	203,5	75,7	144,9	206,9	136,1	114,7	125	59	85,1	1394,60
1985	35,3	110	56,4	126,3	85,2	142,4	134,9	183,9	175,9	164,1	87	119,6	1421,00
1986	56,1	76,7	128	87	194,5	167,4	188,7	215,9	161	121	139,7	86,6	1622,60
1987	84,6	59,7	139,6	205,1	165,4	198,8	140,9	182,2	207,5	88,8	100	103,9	1676,50
1988	84,8	132,4	126,9	128,4	160,4	162	244,7	138,5	144,2	176,3	189,1	100,1	1787,80
1989	162,5	147	164,7	132,4	242,6	260,2	227	220,4	237,4	195,1	101,6	128,9	2219,80
1990	136,1	129,8	207,9	105	222,5	143,8	270,2	257,2	199	163,1	76,3	100,3	2011,20
1991	93,8	107,1	116,6	161,8	148	188,7	170,6	221,8	187,1	124,4	80,2	134,4	1734,50
1992	96,6	151,9	96,3	114	234,2	125,6	194,7	190,1	154,3	63,5	93,1	67,6	1581,90
1993	132,1	139	159,9	148,4	188,4	163,7	201,3	202	150,4	119,5	118,5	68	1791,20
1994	82,8	109,4	151,1	132,3	204,4	231,7	165,3	127,9	141,2	146,6	103,3	72	1668,00
1995	101,5	117,7	164,1	188,6	205,4	227,7	211,8	182,1	157,6	182,7	144	75,7	1958,90
1996	115	76	205,1	187,3	237,8	198	221,7	149,8	199,5	183,7	67,6	86,9	1928,40
1997	105,6	142	217,4	245	188,8	194	153,6	186,2	204,6	161,8	88,7	86,5	1974,20
1998	145,8	159,5	171,7	132,8	156,8	193,5	208,3	200,4	177,5	137,7	115,2	114,8	1914,00
1999	124,5	60,2	122,6	159,5	172,5	188	193,6	211,8	165,9	148,8	102,5	75	1724,90
2000	109,2	85,6	145,7	142,1	182,2	199,8	244,1	206,2	201,2	115,4	78,4	100	1809,90
2001	79,1	98	130,3	155,3	194,1	225,1	189	188,6	190,2	192	87,1	137,1	1865,90
2002	154,8	87,5	176,4	188,6	176,4	131	169,2	123,8	222	119,1	112	80,5	1741,30
2003	79,1	75,5	177,3	184,7	237,4	174,3	210,3	228,1	173,2	96,5	129,7	98,6	1864,70
2004	50,3	141,4	143,1	164,6	215,3	229,9	224	232	166,6	132,8	112,3	59,9	1872,20
2005	132,8	103	196,1	151	211	216	232,2	236,4	194,8	166,8	111,6	86,1	2037,80
2006	88,3	91,4	138,7	165	201,9	230	199,5	202	171,2	154,2	138,3	109,6	1890,10

INSOLACIÓN													
AÑO						MEN	SUAL						ANUAL
ANO	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SEP.	OCT.	NOV.	DIC.	
2007	89,9	94,3	99	143,7	130,8	194,6	213,4	202,9	199	142,1	104,4	121	1735,10
2008	109,1	175,2	98,6	183	190,3	158,8	237,9	212,6	181,2	134,5	66,8	68,9	1816,90
N	29	30	30	30	30	30	29	29	29	29	30	29	30,00
MEDIA	96,85	104,72	138,84	150,04	178,18	183,72	194,57	188,83	176,42	136,62	104,42	92,52	1745,74
MAX	162,5	175,2	217,4	245	242,6	260,2	270,2	257,2	237,4	195,1	189,1	137,1	270,20
MIN	35,3	59,7	56,4	73	71,6	125,6	77,7	123,8	114,7	63,5	59	34,6	34,60