INFORMES TECNICOS
Nº 3 (II)

ESTUDIOS SOBRE FORRAJES

Parte II - FERTILIZACION DE PRADERAS

mayo de 1987

GRUPO DE TRABAJO

Diputación de ALAVA
Diputación de GUIPUZCOA
Diputación de VIZCAYA
Dpto. AGRICULTURA Y PESCA del GOBIERNO VASCO

Cooperativa ASGAFA
Cooperativa BEHI-ALDE
Cooperativa LORRA
INFORMES TECNICOS publicados

No 1. Reunion sobre Paratuberculosis en España
No 2. El alga "Gelidiun" en la costa Guipuzcoana
No 3. Estudios sobre forrajes
 I. Diagnostico de la Pradera Permanente
 II. Fertilizacion de praderas
 III. Ensayos y Campañas 1986
 IV. Sistemas de transformación de monte a pradera
 V. Forrajes conservados
 VI. Valoración nutritiva de los alimentos en rumiantes

No 4. Jornadas de estudio del Cangrejo de rio
No 5. Encuesta serológica sobre la difusión de algunas enfermedades del ganado Ovino Latxo
No 6. Curso de implantación y mejora de praderas
No 7. Encuesta sobre "Lirinios" parasitos del ganado vacuno en Vizcaya
No 8. El alga "Gelidiun" en la costa Vasca
No 9. Estudio de la composición de las especies Anchoa, Sar- dina, Chicharro y Merluza del Golfo de Vizcaya y su variación estacional
No 10. La población de Nécora "Liocaricus puber" en la cos- ta Vasca

PVP 212 ptas. (I.V.A. incluido)
FERTILIZACIÓN DE PRADERAS

Marta Rodríguez Juliá
Sección Prácticultra
S.I.M.A.(Derio)
INDICE

Introduccion
I. Muestreo de suelos. Principios generales.......................................3
II. pH y requerimiento de cal..7
III. Fosforo..17
IV. Potasio..33
V. Nitrógeno..41
VI. Abonado orgánico...59
VII. Fertilización en praderas...68
INTRODUCCIÓN

Como se desprende de los datos obtenidos de los balances de gestión de las diferentes Cooperativas que actúan en la Comunidad Autónoma Vasca, la forma de obtener unos márgenes netos positivos consiste en la óptima utilización de los recursos propios de la explotación, para poder abaratar los costes de la alimentación.

Esto implica realizar un gran esfuerzo por parte de todos, puesto que hay que modificar o cambiar las condiciones de la explotación tanto para maximizar la capacidad productiva como para optimizar su utilización.

Para ello hemos de conocer el potencial con el que contamos en el suelo, la vegetación que soporta y los métodos más adecuados para conseguir la mayor rentabilidad en nuestras condiciones.

Este trabajo engloba de forma asequible una revisión de los factores y puntos fundamentales sobre los que gira el primer objetivo a conseguir "Maximizar la producción de los recursos propios", a la vez que pretende servir de ayuda a todos los técnicos del sector que compartimos este campo de trabajo.

Iniciamos el trabajo desarrollando los puntos relativos a la toma de muestras, pasando a dar un repaso global de la analítica del suelo, haciendo hincapié en los puntos que consideramos de mayor interés en el campo de la fertilización de las praderas. A la vez se aportan datos de los diferentes trabajos que se están realizando sobre estos temas y las conclusiones que se van obteniendo tanto de estos trabajos como de las campañas de abonado realizadas.

Como último se aportan recomendaciones concretas, las cuales no pretenden ser fórmulas exactas, sino que pretenden despejar los diferentes caminos existentes para poder utilizar al máximo los recursos de abonado en los diferentes contextos de manejo.

Esperamos que este trabajo sirva de apoyo a los técnicos y que favorezca la unificación de criterios sobre la fertilización de las praderas para que repercuta positivamente en las propias explotaciones.
I.- MUESTREO DE SUELOS. PRINCIPIOS GENERALES.

El análisis químico del suelo está considerado hoy en día como un elemento esencial para la agricultura moderna. Todas las plantas requieren cantidades variables de todos los nutrientes para conseguir un crecimiento óptimo.

Una parte de estos nutrientes, los micronutrientes o elementos traza, están presentes en el suelo en cantidades suficientes, por lo que su aplicación solo suele ser necesaria de forma ocasional. Sin embargo, las reservas de N, P, K y Mg son frecuentemente insuficientes para mantener un suministro adecuado a las plantas. Las aplicaciones de estos elementos son necesarias para mantener o incrementar el nivel de fertilidad del suelo o bien para eliminar la presencia de elementos que están presentes en el suelo en concentraciones tóxicas, como es el caso de las aplicaciones de cal.

La determinación de pH, necesidad de cal y los macronutrientes son utilizados como base de las recomendaciones de abonado. La determinación de nitrógeno disponible en el suelo solo es útil en ciertas situaciones. En la mayor parte de los cultivos el nivel de N disponible en el suelo cambia de forma rápida e impredecible por lo que no puede ser utilizado para establecer la tasa óptima de fertilización nitrogenada.

El valor del análisis del suelo depende fundamentalmente de la forma en que se ha realizado la toma de muestras para asegurar su representatividad. La mayor parte del error total cometido a lo largo de todo el proceso de determinación analítica, es debida a la toma de muestras, pudiendo representar hasta un 80% del error total, por lo que es imprescindible que este proceso se realice cuidadosamente y con unos criterios unificados, que se exponen a continuación:

Frecuencia de muestreo.

El nivel de nutrientes en el suelo no cambia muy rápidamente lo que permite establecer programas de seguimiento que vayan cubriendo el total de la explotación y mantener estrategias de fertilización.
Para todos los cultivos no es necesario muestrear la misma parcela cada año. La frecuencia de muestreo depende fundamentalmente de la intensidad del cultivo.

- Los pastos o praderas permanentes pueden ser muestreados en intervalos de 5 años.
- Las praderas explotadas de forma más intensiva (o con fuertes aplicaciones de nitrógeno) es conveniente muestrearlas cada 3 años.
- Los cultivos en general y las rotaciones cultivo/gramínea pueden muestrearse cada 4 años.

Profundidad de muestreo.

La muestra de suelo debe ser tomada de la capa de suelo en la que las raíces de las plantas absorban la mayor parte de los nutrientes.

- En los cultivos la profundidad de muestreo debe situarse entre 15 y 25 cm, coincidiendo con la profundidad normal de la capa labrada, que es donde se desarrollará la actividad radicular.

- En las praderas (a no ser que vayan a ser inmediatamente levantadas), la capa de suelo en la que tiene lugar el máximo desarrollo de las raíces y donde se producen los cambios más notables de nutrientes varía entre 5 y 7 cm. (5cm). Cualquier variación en esta pequeña profundidad de muestreo puede influir en los valores de los análisis, para lo que se han diseñado una serie de sondas, que facilitan la toma de muestras al picar directamente sobre la pradera.
Para el muestreo en praderas se utiliza una sonda de las siguientes características:

Para los suelos arables se puede utilizar una barrena, o tornillo o una pala recta.
Número de muestras y submuestras

Se tomará una sola muestra por parcela uniforme, considerando como parcela uniforme aquella que sea tratada como una unidad y con un tratamiento determinado. Para formar la muestra se tomarán, un número determinado de submuestras en diferentes puntos distribuidos en la parcela, mezclándolas posteriormente.

Deben tomarse como mínimo 25 submuestras (en el caso de praderas, 25 picadas de la sonda). La máxima precisión se alcanza con 40 submuestras, siendo este número independiente del tamaño de la parcela. (Antes de muestrear como una sola unidad, una parcela de superficie superior a 4 has, debe considerarse seriamente la uniformidad de la zona).

Dentro del área de muestreo deben de eliminarse las zonas de depósito de estiércol, fertilizantes, cal., lugares cercanos a arbolado, caminos o zonas de refugio de los animales.

Para que la distribución de las submuestras quede asegurada, es conveniente seguir un esquema que evite las zonas no recomendadas y que cruce el mayor número de líneas.

Las muestras deben tomarse después de terminado el cultivo y antes de una nueva aplicación de abonado. No muestrear después de un encalado, aplicación de fertilizante químico u orgánico.

Cada muestra debe pesar no menos de 1/2 Kg, en un recipiente limpio que no haya contenido abonos. Cada muestra debe de estar individual y exteriormente identificada.
II.- PH Y REQUERIMIENTO DE CAL

El pH del suelo es una medida de su acidez o alcalinidad y juega un papel muy importante en la nutrición de las plantas por su influencia tanto en la disponibilidad de los nutrientes en el suelo como en la absorción de estos por las raíces.

La mayoría de los suelos naturales tienen valores de pH comprendidos entre 3 y 10. El óptimo para las praderas se sitúa entre 6 y 6,5, a medida que el pH se incrementa, parte de los elementos traza como B o Cu y Mn están menos disponibles, por lo que es importante no sobrepasar lo. De la misma forma los principales problemas de la acidez del suelo se atribuyen a la toxicidad del Al, Mn y Fe, cuya disponibilidad aumenta a medida que el pH decrece.

Las plantas difieren en su tolerancia a la acidez del suelo y aunque no es posible determinar los valores reales por debajo de los cuales el crecimiento está afectado, si se conocen los valores aproximados por debajo de los cuales los cultivos están limitados.

<table>
<thead>
<tr>
<th>Forrajeras</th>
<th>pH</th>
<th>Cultivos</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trebol blanco</td>
<td>4,7</td>
<td>Remolacha azucarera</td>
<td>5,9</td>
</tr>
<tr>
<td>Dactilo</td>
<td>5,3</td>
<td>Maíz</td>
<td>5,5</td>
</tr>
<tr>
<td>Festuca</td>
<td>4,7</td>
<td>Avena</td>
<td>5,3</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>6,2</td>
<td>Patata</td>
<td>4,9</td>
</tr>
<tr>
<td>Rye grass</td>
<td>4,7</td>
<td>Nabo</td>
<td>5,6</td>
</tr>
<tr>
<td>Esparceta</td>
<td>6,2</td>
<td>Berza</td>
<td>5,4</td>
</tr>
<tr>
<td>Fleo</td>
<td>5,3</td>
<td>Lechuga</td>
<td>6,1</td>
</tr>
<tr>
<td>Vezas</td>
<td>5,9</td>
<td>Tomate</td>
<td>5,1</td>
</tr>
</tbody>
</table>

ORIGEN DE LA ACIDEZ DEL SUELO.

Aunque algunos suelo ácidos pueden desarrollarse por descomposición de materiales de naturaleza ácida (suelos sobre granitos...), en nuestras condiciones el origen de la acidez de los suelos es por lavado y arrastre de las bases de cambio.

El agua suministra hidrogeniones (H⁺) al suelo, los cuales a su paso son reemplazados por cationes como Ca⁺⁺, Mg⁺⁺, K⁺ y Na⁺, que son arrastrados y depositados en los perfiles inferiores del suelo, o son eliminados. Este proceso continúa de lavado altera las características del suelo y requiere mucho tiempo para volver a alcanzar un estado de equilibrio.
La aportación de hidrogeniones por el agua, proviene de diferentes fuentes:

- A partir del CO$_2$ producido en los procesos de descomposición de la M.O., de la respiración de la respiración de las raíces, etc. que se disuelve en el agua formando ácido carbonico:

 \[\text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{CO}_3\text{H}^- + \text{H}^+ \]

- Las formas amoniacales procedentes de materiales o de fertilizantes son oxidadas por bacterias liberando hidrogeniones:

 \[\text{NH}_4^+ + 2\text{O}_2 \rightarrow \text{NO}_3^- + \text{H}_2\text{O} + 2\text{H}^+ \]

- Los mecanismos de absorción radicular de determinados cationes liberan también H$^+$ al medio. Se han encontrado valores de 1,2 unidades de pH menores en las zonas próximas a las raíces que en el resto del suelo.

La pérdida de bases (Ca, Mg, Na, K) y la presencia de Al$^{3+}$ cambiable, son los principales responsables de la acidez del suelo.

Bajo condiciones de acidez se acelera la descomposición de los minerales de las arcillas, liberándose iones Al y Si O$_2$ y pequeñas cantidades de Mg, K, Fe y Mn. Mientras que el SiO$_2$ es eliminado por lixiviación el Al$^{3+}$ y los demás cationes son retenidos como cationes de cambio.
Los iones Al adsorbidos (formando parte del complejo de cambio) se mantienen en equilibrio con el Al libre en la solución del suelo, y su hidrólisis libera H⁺ en la solución según estas ecuaciones:

\[
\begin{align*}
\text{Al}^{3+} + \text{H}_2\text{O} & \rightarrow \text{Al(OH)}^{2+} + \text{H}^+ \\
\text{Al(OH)}^{2+} + \text{H}_2\text{O} & \rightarrow \text{Al(OH)}_2^+ + \text{H}^+ \\
\text{Al(OH)}_2^+ + \text{H}_2\text{O} & \rightarrow \text{Al(OH)}_3^- + \text{H}^+
\end{align*}
\]

Si estos H⁺ son neutralizados por la aplicación de pequeñas cantidades de una base y los iones Al de la solución del suelo son precipitados como Al(OH)₃, el equilibrio del sistema tenderá a mantenerse con el paso de iones Al adsorbidos a la solución del suelo. Estos iones Al volverán a hidrólizarse liberando más H⁺ y el pH se mantendrá igual que al principio. Ahora bien si se añade más base al sistema, la reacción continuará, siendo neutralizado todo el Al adsorbido y reemplazándose por el cation añadido como base. Como resultado, se produce un gradual incremento en el pH del sistema.

A bajos valores de pH (4-5,5) la mayor parte del Al está en forma Al³⁺, y a valores superiores a 5,5 los iones hidroxialuminio están en forma cambiable.

Los iones hidroxialuminio muestran una tendencia muy pronunciada para formar unidades poliméricas, de 6 o más átomos de Al, más complejas que las representadas en estas ecuaciones.

Coleman (1958) trató suelos con una solución neutra y observó que la capacidad de intercambio cationico estaba totalmente dominada por iones Al. Tratando estos mismos suelos con una solución a pH = 8,2, aparecían iones H⁺ que aumentaban el valor de la CIC.

Este aumento de la CIC fue interpretado porque en los suelos ácidos al aumentar el pH de la solución se protonizaban 1gs grupos oxhidrilos de la M.O. y de los compuestos de Fe y Al creándose así nuevas cargas que aumentaban la CIC.

A partir de aquí surgió el concepto de carga dependiente del pH y de la capacidad de intercambio cationica efectiva (CI Ce), es decir medida al pH del suelo. En valores de pH alrededor de 6 la CI Ce corresponde a la saturación de las bases, por debajo de 5,5 la presencia de Al en el complejo de cambio es notable y por debajo de 5 el porcentaje de saturación de la CI Ce por el Al es muy importante.
Componentes del Complejo de Cambio de diversos suelos (Vizcaya).

Complejo de Cambio

<table>
<thead>
<tr>
<th>pH</th>
<th>M.O.</th>
<th>Acidez</th>
<th>Bases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Al</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>3,9</td>
<td>15,8</td>
<td>17,9</td>
<td>-</td>
</tr>
<tr>
<td>4,35</td>
<td>14</td>
<td>13,6</td>
<td>0,1</td>
</tr>
<tr>
<td>4,5</td>
<td>14</td>
<td>7,09</td>
<td>1</td>
</tr>
<tr>
<td>4,85</td>
<td>2,8</td>
<td>2,4</td>
<td>-</td>
</tr>
<tr>
<td>5,60</td>
<td>3,1</td>
<td>0,5</td>
<td>-</td>
</tr>
</tbody>
</table>

El exceso de Al soluble que tiene lugar en el suelo a pH inferiores a 5 es tóxico para la mayoría de las plantas. La toxicidad del Al parece ser la principal causa de la baja fertilidad que manifiestan los suelos ácidos. Es característico también de estos suelos:

* Toxididad del Manganeso. El Mn está presente en el suelo en diferentes formas, dependiendo fundamentalmente de la acidez y aireación del suelo. La absorción de Mn por las plantas, se incrementa rápidamente cuando el pH desciende, y en condiciones de extrema acidez puede alcanzar valores tóxicos. A pH superior a 6,2 la cantidad de Mn soluble desciende rápidamente y puede llegar a ser deficiente a pH muy elevados, sobre todo en los suelos arenosos o en los arcillosos en la época húmeda cuando las condiciones de aireación del suelo son malas.

* Deficiencia de Molibdeno.

* En valores de pH alrededor de 6,5 es donde se sitúa la disponibilidad mayor para los nutrientes. En las zonas donde los nutrientes están encadenados, dichos nutrientes reaccionan formando compuestos insolubles. El pH entre 5,5 y 7 es el más favorable para el P, por encima y debajo de estos valores la solubilidad del P está controlada por los compuestos de Ca, Al y Fe respectivamente.
Relación entre el pH y la disponibilidad relativa de los nutrientes para las plantas.

El cambio en el concepto de acidez del suelo ha originado a su vez un cambio en las teorías de encauzado, pues este ahora no está orientado a subir solo el pH, sino a neutralizar el Al de cambio, valorando el porcentaje de Al en la capacidad de intercambio cationico.

Las necesidades de cal se basan en la cantidad de cal necesaria para reducir este porcentaje de Al hasta un determinado valor deseado(D). Cuando este porcentaje es superior a un 40% de la CIE, la mayoría de los cultivos presentan problemas, porcentajes menores al 10% se consideran no problemáticos.
Para el cálculo de las necesidades de cal utilizamos la fórmula:

\[
\text{Necesidad de cal (en T/ha de carbonato cálcico puro)} = \frac{(A_1 - D \times (A_1 + Ca + Mg) / 100)}{2}
\]

O los ábacos obtenidos a partir de los ensayos llevados a cabo por F. Mombiela (1983), que relacionan el % de Al actual con la necesidad de cal necesaria para reducirlo al % deseado (D=10).

Necesidades de cal en función del porcentaje de saturación de Al actual (%actual) y deseado (D). (Mombiela y Mateo, 1983).

MATERIALES DE ENCALADO.

Según la reglamentación existente (BOE 20-7-70), se definen como enmiendas calizas y magnésicas a aquellas materias fertilizantes que contienen Ca y Mg generalmente en forma de óxidos, hidróxidos y carbonatos, destinados fundamentalmente a mantener o elevar el pH del suelo y mejorar sus propiedades.
PRODUCTOS CRUDOS

CALIZAS MOLIDAS (CO$_3$Ca)
RIQUEZAS MEDIAS
45-55 % CaO

CALIZAS MAGNESICAS O DOLOMITAS (CO$_3$)$_2$Ca Mg
30% CaO + 20 % MgO

CRETAS FOSFATADAS MARGAS
3 % P$_2$O$_5$, 30 % CaO
25 % CaO

PRODUCTOS COCIDOS

CAL VIVA (CaO)
70-95 % CaO

CAL APAGADA Ca(OH)$_2$
50-72 % CaO

CALES MAGNESICAS (obtenidas por cocción de la dolomita)
mínimo 15% MgO
70% MgO + CaO

CALES MAGNESICAS APAGADAS
mínimo 10% MgO
50% MgO + CaO

CENIZAS DE CAL (residuos de la fabricación de cal)
40% CaO + MgO

Existen otros productos diversos como son las enmiendas calizas fosfatadas de origen siderúrgico (3-12% P$_2$O$_5$ y mínimo de 30 % CaO), y las escorias de desfosforilación (Escorias Thomas) que aunque su principal utilización sea de abono fosfórico su contenido en CaO es muy elevado. En estos productos el calcio se encuentra en estado de cal libre o en combinaciones cálcicas complejas (fosfatos y silicatos de Ca) susceptibles de liberar el Ca en el suelo por hídrolisis. Las escorias Thomas deben tener un mínimo de 14% de P$_2$O$_5$ total y entre 45-55 % de CaO.
Existen varias formas de expresar el valor de las enmiendas calizas:

a) Equivalentes en carbonato calcico, conocido a veces como poder de neutralización. El poder de neutralización de un material de encañado mide su capacidad relativa de neutralizar un ácido con respecto a la del CO$_3$Ca puro. Así cuando 100 Kg de un determinado material tiene la misma efectividad para neutralizar a un ácido que 80 Kg de CO$_3$Ca puro, decimos que tiene un poder neutralizante de un 80 %. Cualquier otro material puede ser convertido en su equivalente en carbonato calcico, utilizando sus pesos atómicos y moleculares. P. ej. si deseamos calcular el equivalente en carbonato calcico de un oxido de cal.

\[
\% \text{CO}_3\text{Ca equivalente} = \frac{100}{\text{P.M. } \text{CO}_3\text{Ca}} \times 100 = \frac{100}{56} \times 100
\]

= 178,6 %.

FACTORES DE CONVERSION

<table>
<thead>
<tr>
<th>PARA PASAR DE ESTOS MATERIALES (Columna A)</th>
<th>A ESTOS OTROS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>CaO</td>
</tr>
<tr>
<td>1,00</td>
<td>1,40</td>
</tr>
<tr>
<td>0,71</td>
<td>1,00</td>
</tr>
<tr>
<td>0,54</td>
<td>0,78</td>
</tr>
<tr>
<td>0,40</td>
<td>0,56</td>
</tr>
<tr>
<td>1,65</td>
<td>2,31</td>
</tr>
<tr>
<td>0,99</td>
<td>1,39</td>
</tr>
<tr>
<td>0,69</td>
<td>1,00</td>
</tr>
<tr>
<td>0,48</td>
<td>1,67</td>
</tr>
<tr>
<td>0,43</td>
<td>0,67</td>
</tr>
</tbody>
</table>
b) Equivalentes en oxido calcico. Si el carbonato magnesico puro es expresado en su equivalente en oxido calculico los calculos serian:

\[
\text{\% CaO equivalente} = \frac{\text{P.M. de CaO}}{\text{P.M. de CO}_3\text{Mg}} \times 100 = \frac{56}{84} \times 100 = 66.7 \% \text{ CaO equivalente.}
\]

c) Porcentaje de cada elemento. p. ej. si el carbonato calcico puro se expresara como calcio elemental

\[
\text{\% Ca} = \frac{\text{P. a. Ca}}{\text{P. M. CO}_3\text{Ca}} \times 100 = \frac{40}{100} \times 100 = 40 \% \text{ Ca equivalente.}
\]

La efectividad de los materiales de encalado depende de la solubilidad de los compuestos, asi el CaO es mas soluble que el CO\(_3\)Ca, aunque las calizas molidas son mas solubles que las calizas magnesicas y el silicato calcico es el compuesto menos soluble de todos los materiales de encalado.

En las dolomitas (carbonato calcico magnesico), aunque el Mg tarda en ser efectivo como nutriente, su accion como corrector de la acidez del suelo es solamente un poco mas lenta que la calcita molida; sin embargo el uso de dolomita como material de encalado es la forma mas efectiva de corregir a largo plazo la deficiencia de Mg en los suelos.

Parece obvio que el estado de finura de los materiales de encalado debe influir de gran manera, cuanto mas fino sea mas rapidamente se "incorporara" al suelo; sin embargo se ha comprobado experimentalmente que no existen diferencias apreciables entre calizas molidas en las que el grado de finura variaba entre un 22%, 35% y 52% de material que pasaba por un tamiz de 0,15 mm. (Mombiela F, 1983)

Los gastos economicos que conlleva el moler el material en finurar superior al 55 % de paso a travers de 0,15 mm parece no estar justificado y excepcionalmente este tipo de material deberia ser usado solamente cuando realmente se dan sintomas de acidez en los cultivos.
La forma más eficiente de la aplicación de cal es utilizar pequeñas cantidades cada 2 años, lo que incrementa mucho los costes. En la práctica del encalado hay que elegir entre la forma más eficiente y la más económica de aplicación.

La cal puede ser aplicada en cualquier estadio de la fase productiva, pero es mejor aplicarlo unos meses antes de la siembra para que las respuestas sean buenas.

En las praderas la aplicación exterior de cal no es tan efectiva como cuando está en contacto directo con el suelo, por lo que es aconsejable aplicarla en verano cuando la cubierta vegetal esté más seca y favorezca de la mayor forma posible su incorporación al suelo. Si la hierba está mojada las hojas se cubren con cal que termina pegándose al secarse. Un pase suave de grada, favorece su incorporación al suelo a la vez que acelera la descomposición de la materia muerta acumulada en la superficie.

La necesidad de encalado para la mayor parte de los cultivos debería basarse en los análisis de suelo realizados de forma regular cada 4 años aproximadamente y de forma más frecuente para los cultivos más sensibles. De forma general, para las praderas lo ideal sería elevar el pH hasta un valor de 6 y no dejar que bajara de 5,5.
III. - FOSFATO

Sin tener en cuenta el papel del fósforo como nutriente esencial, el hecho de que su deficiencia en los suelos esté muy difundida y su tendencia a reaccionar con los componentes del suelo para formar compuestos relativamente insolubles han hecho de este elemento un tópico de gran importancia en el ámbito de la fertilidad del suelo.

El P procede originariamente de las rocas ignea y de los meteoritos en los que se encuentra como apatita cristalina. El P tiene también origen sedimentario dando lugar a los yacimientos de fosforita, punto principal en la fabricación de los fertilizantes fosforados.

El fósforo en su "fase sólida" puede encontrarse formando parte de compuestos orgánicos de los que hablaremos más adelante. En su "fase líquida" adopta las siguientes formas iónicas: \(\text{PO}_4^{3-} \), \(\text{PO}_4^{2-} \), \(\text{PO}_4^{-} \). El P es absorbido por las plantas en las formas: \(\text{PO}_4^{2-} \) y \(\text{PO}_4^{-} \), creyéndose que solo la absorción del ion monovalente es activa metabólicamente. La concentración de estos iones en la solución del suelo y su mantenimiento es de vital importancia para el crecimiento vegetal.

La concentración de P en la solución del suelo depende entre otras cosas: de la tasa de formación y descomposición de la Materia Orgánica y de la tasa de liberación o inmovilización de la fracción orgánica.

\[
\begin{align*}
P & \xrightarrow{\text{COMBINACIONES ORGANICAS}} \text{P} \\
P & \xrightarrow{\text{SOLUCION}} \text{RELATIVAMENTE INSOLUBLE} \\
\text{Compuestos Fe, Al} & \ldots
\end{align*}
\]
DESEARROLLO DEL P ORGANICO EN EL SUELO

La presencia de formas organicas de P en los suelos fue descubierta hace aproximadamente 1 siglo. Desde entonces se han realizado numerosos trabajos para examinar esta fracción, estudiar su naturaleza, cantidad y sus propiedades en relación a la fertilidad del suelo.

Las formas organicas que han sido específicamente identificadas son: fosfolípidos, ácidos nucleicos y fosfatos de inositol.

En los suelos en equilibrio se han encontrado evidencias de que tiene lugar una "mineralización del P organico". En estos suelos al iniciarse los cultivos el contenido de M.O. decrecía y este decrecimiento iba acompañado de un aumento en el contenido de formas inorganicas de P.

Sin embargo la mineralización de P organico no es análoga a la del C o N, aunque la mayor parte de los factores que afectan a los niveles de P organico actuan sobre los otros componentes de la materia organica. Se ha intentado estudiar la mineralización del P organico en relación con la proporción C/N/P en el suelo dándose como teórica la relación 100:10:1, pero se han encontrado valores que van desde 229:10:0,39 hasta 71:10:3,05.

A partir de estos valores varios autores han sugerido que si la relación C/P inor. es de 200:1 o menor, tiene lugar la mineralización del P organico, pero si esta relación es de 300:1 puede ocurrir una inmovilización del P organico. Otros autores suponen que es la relación N/P la que está más ligada a la mineralización e inmovilización del P organico y sugieren que al decrecer uno de ellos aumenta la mineralización del otro, así por ejemplo al aumentar la tasa de acumulación de la M.O. parte de los elementos minerales (N,P,S..) pueden ser inmovilizados en compuestos organicos más o menos estables.

El desarrollo de las formas organicas de P en el suelo y su relación con las fuentes de C,N,S, tienen un papel muy importante en la practica de la fertilización pero su influencia no está todavía bien estudiada.
De forma general es posible asumir estas ideas.

- Si se aplican cantidades adecuadas de nutrientes (N, P, S) a suelos en los que hay una acumulación de residuos vegetales, parte de estos elementos pueden ser inmovilizados en compuestos orgánicos más o menos estables.

- El continuo uso del suelo sin aplicaciones suplementarias de N, P, S... favorecerá la mineralización de estos elementos y por lo tanto agotará sus reservas en el suelo.

- Si el N, P o S está presente en cantidades insuficientes la síntesis de la M.O. puede ser impedida.

DESEARROLLO DEL P INORGÁNICO EN EL SUELO

Las plantas absorben el P en forma PO_4^{2-} y PO_4^{3-}. La concentración de estos iones en la solución del suelo suele ser muy baja y si consideramos que las extracciones de P de una pradera pueden variar entre 18 y 50 kg p/ha, el P en la solución del suelo tiene que estar continuamente reemplazándose para poder su ministrar la cantidad necesaria.

La concentración de estos iones está íntimamente relacionada con el pH. La forma de PO_4^{3-} se da en medio ácido y la forma PO_4^{2-} en medio básico.
Según esta gráfica la máxima viabilidad de P ocurre entre un pH de 5.5 y 7, sin embargo, estas curvas son teóricas pues presuponen que los iones Fe, Al, Ca y Mg no están presentes en el medio.

La solubilidad real de los compuestos fosfatados depende del pH del medio y de las especies minerales presentes. Las isotermas de solubilidad se utilizan para determinar la estabilidad de los compuestos fosfatados en los suelos a diferentes valores de pH. Si un punto calculado de solubilidad cae por encima de una determinada isoterma la solución del suelo está supersaturada con respecto a este compuesto e infrasaturada si el punto cae por debajo de la isoterma.

La condición supersaturada implica la precipitación de este compuesto y la infrasaturada su solubilidad.
Como se ve, el intervalo de pH de máxima solubilidad para el P es entre 5 y 6. En los suelos con pH mayor de 6,5 la concentración de PO_4^{3-} en la solución del suelo está controlada por el fosfato cálcico más soluble que el hidroxiapatito y menos soluble que el fosfato octocálcico, de la misma forma a un pH de 4, la concentración del PO_4^{3-} en la solución del suelo, estará controlada por los fosfatos de aluminio más soluble que la varrasscita, menos solubles que las taranakitas.
Retención del P por los hidroxidos de Fe y Al

Los oxidos e hidroxidos de Fe, Al, aparecen como componentes discretos del suelo, recubriendo las partículas minerales o como compuestos amorfos entre las capas de los silicatos.

Wild (1950) vio que existían evidencias considerables de que estos compuestos tenían mucho que decir en la retención del P sobre todo en los suelos ácidos y que la cantidad de P retenida dependía del tiempo de reacción, de la temperatura, pH y concentración del P en la solución.

Parfitt (1975) utilizando espectroscopía de infrarrojos designó un modelo de reacción entre los oxidos de Fe y los iones fosfato: dos grupos OH⁻ o 2 moléculas de H₂O superficiales son reemplazadas por un ión fosfato, coordinándose dos átomos O₂ del fosfato cada uno a un diferente ión Fe³⁺ dando una superficie-binuclear compleja.

![Diagrama de reacción]

- FOSFATO ADSORBIDO REVERSIBLEMENTE (labil)
- FOSFATO ADSORBIDO IRREVERSIBLEMENTE (inerte)

Reacciones similares a estas se sugieren para explicar los mecanismos de absorción del P por los alúfanos y otros compuestos hidroxialuminicos.

A bajas concentraciones de P los hidroxidos retienen el P mediante mecanismos de absorción, y a altas concentraciones los mecanismos parecen concluir en reacciones de precipitación.
Retención del P por las arcillas

Existe una correlación directa entre la adsorción de P y el contenido de arcilla del suelo, sin embargo las diferentes tipos de arcillas varian en su poder de adsorción de los fosfatos.

Los mecanismos de adsorción del P por las arcillas, son similares a los anteriormente expuestos para los hidroxidos de Fe y Al, dándose a bajas concentraciones de P mecanismos puramente de adsorción y a altas concentraciones de P mecanismos de precipitación.

Las diferencias entre los diferentes tipos de arcillas para adsorber el P dependen:
- De la superficie expuesta (las de tipo 1:1, adsorben más que las de tipo 2:1)
- De la concentración de Al y Fe en su superficie
- Del pH (a menor pH, mayor adsorción)
- Del resto de los cationes de cambio: Ca, Mg, NH₄

Retención del P por los carbonatos

En los suelos alcalinos que contienen cantidades apreciables de CO₃Ca libre los iones P₀₄H₂⁻ entran en contacto con el CO₃Ca en fase sólida y son precipitados en su superficie.

La cantidad de precipitación depende de la cantidad de superficie de CO₃Ca expuesta y de las concentraciones de P en sus alrededores. Parece que por lo menos las fases iniciales de este proceso son fenómenos de superficie.

Los mecanismos de adsorción del P por la calcita no se conocen mediante ecuaciones de adsorción como en las arcillas; a bajas concentraciones de P tiene lugar mecanismos de adsorción y a altas concentraciones ocurren precipitaciones.

El grado de adsorción del P depende de la superficie activa de la caliza siendo mayor a medida que el tamaño de la partícula es menor. En los suelos calcarceos, a pesar de la existencia de CO₃Ca libre, los hidroxidos son importantes en la adsorción del P. La unión CO₃Ca-P es menos intensa (a bajas concentraciones de P) que la unión hidroxido-P por lo que este tipo de P puede -
estar más disponibles para las plantas. De todas formas no existe una correlación clara entre el contenido de caliza y la sorción o retención del P como existe en el caso de las arcillas, quizás debido a que la caliza puede variar considerablemente en la superficie activa susceptible de adsorber P.

Otro mecanismo generalmente considerado como responsable de la fijación del P en los suelos alcalinos es la retención del P por las arcillas saturadas de Calcio. Como ya se ha indicado, las arcillas saturadas con este cátion pueden retener el P mediante uniones del tipo ARCILLA-Ca-P\textsubscript{4}H\textsubscript{2}. Esta reacción ocurre en suelos de pH debidamente básico pues en los suelos más básicos la reacción es probable que sea directamente de precipitación.

La concentración de P en la solución en los suelos alcalinos está gobernada por 3 factores:

- Actividad del ión Ca++
- La cantidad y tamaño del Ca\textsubscript{2} libre en el suelo
- La cantidad de arcilla presente.

La actividad del P será menor en aquellos suelos que tengan una alta actividad de Ca++, una gran cantidad de pequeñas partículas de Ca\textsubscript{2} o una gran cantidad de arcillas saturadas de Ca.

Retención del P por la Materia Orgánica

Muchos trabajos han puesto de manifiesto que el extracto húmico del suelo incrementa la disponibilidad del P, y se han dado varias hipótesis sobre los mecanismos que pueden ocurrir:

- Formación de compuestos fosfo-húmicos que son más fácilmente asimilados por las plantas
- Reemplazamiento del P\textsubscript{4}H\textsubscript{2} con cationes (Fe, Al, Ca) de la materia orgánica.
- Por formación de una capa húmica sobre los sesquioxidos de Fe, Al, que les proteje reduciendo así la capacidad de fijación del P.
La descomposición de los residuos orgánicos va acompañada de producción de CO$_2$, que cuando está disuelto en H$_2$O forma ácido carbónico capaz de descomponer algunos minerales primarios del suelo. En los suelos calcareos la producción de CO$_2$ juega un papel importante al aumentar la disponibilidad del P.

PROCESO OPERATIVO DE ABSORCIÓN EN EL SUELO. PAPEL RESIDUAL DEL FOSFORO

Cuando a un suelo se le añaden fertilizantes fosfatados y estos se disuelven en el agua del suelo tienen lugar una serie de reacciones entre los fosfatos y los constituyentes del suelo (anteriormente explicadas), mediante las cuales parte del P en la solución es eliminado y permanece en formas menos solubles, este fenómeno es lo que se conoce como Fijación o Retención del P en el suelo.

Para explicar la dinámica del P hay que pensar que el P que está presente en el suelo lo está en 3 categorías:

A) El P que está en la solución del suelo
B) El P que está absorbido a las partículas del suelo y que está en equilibrio con el P en solución
C) Todo aquel otro P (menos labil, precipitado...) que no está en equilibrio con el P en solución.

Esta clasificación del P en 3 fases quizás sea un reflejo del desconocimiento de su naturaleza, pero lo esencial es que pone de manifiesto que de alguna forma este P es menos disponible para las plantas. Cuando el equilibrio entre estas 3 fases es disturbado por la aplicación de fertilizantes la reacción entre el P en solución y el suelo tiene lugar 2 pasos:

- Un paso rápido en el cual parte del P es absorbido
- Un paso más lento en el cual parte del P se convierte en formas más fuertemente retenidas.
 Esto se comprobó utilizando P32 y estudiando la cantidad de P del suelo que era cambiable, y se vio:

 - En suelos pobres de P o que no habían recibido fertilización fosfatada en tiempo, una pequeña proporción del P era susceptible de ser intercambiada.
 - Esta posibilidad de cambio duraba mucho tiempo, es decir por mucho que el P32 fuera intercambiado rápidamente, el cambio seguía existiendo durante largos períodos de tiempo (medidos en semanas o meses) pero con una tasa decreciente.
 - Cuando el P era adsorbido por el suelo, todo el era isotópicamente cambiable pero con el tiempo esta cantidad decrecia, en esta tasa podia permanecer un periodo de años pero continuaba decreciendo durante varios años.

Para explicar estas reacciones se han propuesto muchos mecanismos: intercambio de cationes, adsorción química, adsorción física, precipitación en superficie etc..., que en general no son más que casos especiales de reacciones de precipitación o de adsorción y se han utilizado muchos criterios físico-químicos para intentar caracterizarlos, como las isotermas de adsorción que relaciona la distribución entre el P en solución y el P adsorbido.

Esta curva descrita por las isotermas pone de manifiesto que "por cada incremento sucesivo en la concentración hay un incremento cada vez más pequeño en la absorción".

La 1ª parte de la isotema es curvada y la concentración de P no suele exceder de 5,10^{-4} M lo que cubre el rango normal de concentraciones encontradas en el suelo y la 2ª parte de la isotema es rectilínea. En la 1ª zona el suelo absorbe P muy fuertemente a bajas concentraciones pero a medida que la concentración aumenta el gradiente de la curva decrece.
Para explicar estas reacciones lentas y rápidas se han postulado muchas teorías todas de las cuales vuelven a incidir en los mecanismos explicados para los hidroxidos.

De la misma forma, cuando el P es eliminado de la solución del suelo, por ejemplo por las plantas, cabe esperar un movimiento en la dirección contraria, es decir de las formas fuertemente retenidas a las formas adsorbidas y de estas a la solución del suelo.

Leamer (1963) encontró que después de 4 años de cultivo de alfalfa aproximadamente 2/3 del P aplicado había sido recuperado por el cultivo, pero el incremento de la proporción de P original recuperado era lento, llegándose a conseguir el 80%, después de 9 años.

Tales resultados sugieren que en un tiempo determinado, la reacción de adsorción del P es reversible aunque los últimos estados puedan ser muy lentos.
FERTILIZANTES FOSFORÍCOs.

Los depósitos de rocas fosforadas son la fuente principal de todos los fertilizantes. El mineral de fosforo más abundante es el carbonato de fluorapatita $\text{Ca}_{10}\text{F}_2(\text{PO}_4)_6$. Ca CO_3 encontrándose las reservas mundiales más importantes en Norte de África, América del Norte y Rusia.

Este producto inicial tiene un contenido entre un 14 y 35% de fosfato, pero debe concentrarse antes de iniciar el proceso de obtención de los distintos fertilizantes.

El proceso de depuración incluye, lavado, hidroseparación y concentración por flotación.... El producto obtenido tiene una riqueza entre 31 y 33% de P_2O_5 y puede ser molido o calcinado. Apartir de aquí queda la función de convertir el fluorapatito en formas más solubles para ser utilizadas por las plantas.

![Diagrama de proceso de obtención de fertilizantes fosfóricos]

FERTILIZANTES SIMPLES O MIXTOS

(Proceso de obtención de los fertilizantes fosfóricos)
TERMINOLOGIA DE LOS FERTILIZANTES DE P.

La solubilidad del P varía según las formas en que se encuentre este elemento. Se han determinado métodos químicos que permiten estimar la solubilidad del P como criterio de la disponibilidad para las plantas.

Los términos más frecuentemente usados son:

Fósforo soluble en agua - expresado como % en peso, representa la fracción soluble en agua.

Fósforo soluble en citrato - El residuo no soluble en H₂O es tratado con una solución neutra de citrato amónico (1N).

Fósforo insoluble en citrato - El residuo de las 2 extracciones anteriores.

Fósforo disponible - Es la suma del P soluble en H₂O + P soluble en citrato, que representa la fracción disponible para las plantas.

Fósforo total = Fósforo disponible + Fósforo insoluble en citrato

Los abonos fosfatados se valoran y comercializan por la riqueza en fosfor disponible, sin tener en cuenta el contenido total.

El sistema de valoración de los fosfatos naturales y de los parcialmente descompuestos, constituye una excepción, pues está basado en el contenido total. La indicación de la solubilidad en ácido formico es el procedimiento más adecuado para diferenciar los abonos fosfatados naturales.
<table>
<thead>
<tr>
<th></th>
<th>% P<sub>2</sub>O<sub>5</sub></th>
<th>% Ca</th>
<th>% S</th>
<th>Equivalentes Acidez o Basicidad en Kg CO<sub>3</sub>Ca(*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFOSFAIO SIMPLE</td>
<td>18-20</td>
<td>18-21</td>
<td>12</td>
<td>Acido</td>
</tr>
<tr>
<td>SUPERFOSFAIO TRIPLE</td>
<td>45-46</td>
<td>12-14</td>
<td>1</td>
<td>Base</td>
</tr>
<tr>
<td>ACIDO FOSFORICO</td>
<td>52-54</td>
<td></td>
<td></td>
<td>neutral</td>
</tr>
<tr>
<td>H<sub>3</sub>PO<sub>4</sub></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>ACIDO SUPERFOSFORICO</td>
<td>76-83</td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>H<sub>4</sub>P<sub>2</sub>O<sub>7</sub>,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H<sub>5</sub>P<sub>3</sub>O<sub>10</sub>,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESCORIAS BASICAS</td>
<td>12</td>
<td>32-40</td>
<td></td>
<td>80-100</td>
</tr>
<tr>
<td>FOSFATOS NATURALES</td>
<td>26-33</td>
<td>32-36</td>
<td></td>
<td>80-90</td>
</tr>
</tbody>
</table>

*Equivalentes por 100Kg de cada material.

PRINCIPALES FERTILIZANTES FOSFORICOS
Los fosfatos de alta concentración (polifosfato, metafosfatos y ultrafosfatos) se derivan del ácido fósforico por eliminación del agua en fases sucesivas, obteniéndose ácidos superfosfóricos de alto contenido en P y de fórmula general $\text{H}_{n+2}(\text{PO}_3^{n+1})$. Sus sales alcalinas o alcalino terreas son los polifosfatos.

Los polifosfatos solubles juegan un papel muy importante en las soluciones nutritivas de los abonos líquidos. Su efecto fertilizante es similar al de los abonos fosfatados más usuales.

(Dinámica de un abono fosfórico en el suelo)

Los superfosfatos están particularmente indicados en todas las tierras neutras y básicas. Se les ha acusado, de ser los responsables de la acidificación de los suelos, pero se ha demostrado que no tienen influencia en el pH del suelo.

Los fosfatos naturales se componen de fosforita molida. La blandura de la roca y el tamaño de partícula hacen que sean suficientemente movilizables por el efecto del ataque del suelo.

Según su solubilidad en ácido fórmico pueden distinguirse en tres grupos:

* Abonos con un alto porcentaje movilizable (65-80% soluble en ácido fórmico) como p.e. el hiperfosfato.
*Abonos con una fracción movilizable media (60%)
*Abonos con una fracción movilizable baja (40-55%)

El valor de los fosfatos naturales, no depende únicamente de su solubilidad, sino también del poder de movilización de los distintos suelos. Los fosfatos naturales se movilizan tanto más cuanto menor sea el pH y más altas sean la humedad y temperatura. El valor de pH óptimo se sitúa por debajo de 6. Los fosfatos naturales tienen un efecto alcalinizante, debido a su contenido en CaO.
El tercer nutriente esencial en orden de importancia, el potasio, es todavía un enigma. Es uno de los elementos que forma parte de los compuestos químicos más solubles, pero sin embargo sus formas minerales en el suelo (micas y feldespatos) son muy poco solubles. Es el catión más abundante en las plantas, pero la descomposición de la M.O. proporciona muy poco potasio al medio y por último su papel en las plantas es de ion movil más que como constituyente específico. Sus funciones afectan a la división celular, formación de carbohidratos, traslocación de los azucares, acciones enzimáticas etc.

Aunque el K se encuentre en el suelo en cantidades apreciables solo una pequeña parte, menor del 1%, se encuentra en forma cambiable, es decir en la solución del suelo, o adsorbido a la fracción coloidal y por lo tanto participando activamente en el sistema.

La mayor parte de este K no cambiable (aproximadamente 90-98%) se encuentra como componente de los minerales primarios y solo será liberado lentamente por la descomposición de los minerales, que normalmente no es un proceso lo suficientemente rápido como para tener importancia en los cultivos inmediatos. Sin embargo otra parte del K no cambiable se encuentra en el suelo en los minerales secundarios como las illitas, vermiculitas y cloritas, y tiende a ser liberado como formas solubles o cambiables, por eso muchos autores han dividido el K no cambiable en "K no disponible" y "K lentamente disponible"
Esta clasificación aunque es arbitraria sirve para definir los tipos de potasio en el suelo y su relativa utilidad para las plantas. Los límites de separación son difusos y no tan exactos como estas 3 categorías deberían implicar.

La aplicación de fertilizantes potásicos al suelo altera el equilibrio y parte del K soluble y cambiable pasa a formas de K no cambiable, este proceso es lo que se conoce como "Fijación".

La fijación de K^+ es el resultado de un atrapamiento de estos iones entre las capas de las arcillas tipo 2:1 (Vermiculitas, Montmorillonita), el K^+ sin hidratar se aloja entre las capas encajado entre los átomos de O_2 y es mantenido en esta posición por fuertes fuerzas electrostáticas.

Bajo condiciones de cultivo intensivo, la absorción de K por las plantas se ha correlacionado positivamente con los niveles iniciales de K^+ cambiable en los suelos, sin tener en cuenta lo que el K^+ no cambiable podía representar. En el siguiente gráfico, se ve que en condiciones de cultivo intensivo aproximadamente la mitad del K^+ utilizado por las plantas procedía del K^+ cambiable y la otra mitad procedía de las formas no cambiable.

Absorción de K^+ por planta (meq/100gr)

K^+ cambiable suelo (meq/100gr)
De todo el sistema de equilibrio entre las diferentes formas de K^+, la reacción principal es la correspondiente al K^+ cambiable; es decir al equilibrio entre las formas absorbidas y el K^+ en la solución del suelo. La concentración de K^+ en la solución del suelo está en relación directa con la cantidad de K^+ cambiable en el suelo, que depende del contenido y tipo de arcilla del suelo, es decir dependerá del poder de amortiguación del suelo para el K^+.

Así vemos que para una determinada concentración de K^+ en la solución la cantidad de K^+ cambiable es muy superior en los suelos arcillosos que en los arenosos. Por el contrario para un cierto nivel de K^+ cambiable la concentración en la solución es tanto menor cuanto más arcilloso es el suelo. Como contrapartida favorable a la menor concentración de K^+ en la solución, en los suelos ricos en arcilla hay que destacar su gran poder de amortiguación que evita una caída importante de la concentración cuando el K^+ es absorbido por los cultivos.

Esto puede explicarse porque el K se une a las arcillas tipo 2:1 como las vermiculitas y las illitas en 3 posiciones con diferentes intensidades.
La posición p no es específica para el \(K^+ \), la posición e y más particularmente la i tiene una alta especificidad o selectividad para el \(K^+ \).

Una alta selectividad quiere decir que las posiciones p estarán ocupadas por \(K^+ \) cuando la concentración de este sea muy elevada en la solución del suelo, y por lo tanto las posiciones p estarán en equilibrio con la solución del suelo cuando su concentración en \(K^+ \) sea alta, mientras que el potasio en las posiciones e, i estará en equilibrio con la solución del suelo a concentraciones más bajas de \(K^+ \).

Así, en la gráfica anterior, si un suelo es arenoso, por lo tanto con una capacidad de cambio baja (poder amortiguación menor) los sitios específicos de unión son saturados antes y las posiciones p controlan la concentración de \(K^+ \) en la solución; En un suelo arcilloso, con alta capacidad de cambio el \(K^+ \) es absorbido por las posiciones e, i en mayor cantidad bajando la concentración de \(K^+ \) en la solución, a medida que las posiciones e, i están saturadas, son las posiciones p las que empiezan a controlar la concentración de \(K^+ \) en la solución.
FACTORES QUE AFECTAN EL EQUILIBRIO DEL K EN EL SUELO

1. TIPO DE COLOIDE. Las arcillas tipo 1:1 (clay...), no retienen el K de la misma forma que las de tipo 2:1 (vermiculitas, illitas...).

Cuando más alto sea el contenido de arcillas de tipo 2:1 mayor será la fijación de los iones K⁺ presentes en la solución del suelo.

Aunque la M.O. participa en el equilibrio \(K^+ \) solución - K⁺ absorbido, no tiene capacidad de retener al K⁺ más fijamente.

2. TEMPERATURA Y HUMEDAD.

Ambos parámetros influyen en la disponibilidad de K⁺ pero no se conocen en profundidad y su comportamiento es a veces contradictorio. Estudios realizados en laboratorio en los que se alternaban periodos de congelación y descongelación vieron que algunos suelos liberan K⁺. De la misma forma los periodos de sequía incrementaban el nivel de K⁺ cambiable, pero esto ocurría solo en suelos con niveles bajos en K mientras que en suelos con valores altos ocurría lo contrario. Aunque la importancia de estas reacciones no se conozcan es lógico que tienen influencia en la expansión de las arcillas.

3. pH

El efecto del pH en la fijación o liberación del K⁺ en el suelo ha sido objeto de controversias durante muchos años. Los suelos con alto grado de saturación de las bases pierden menos K⁺ cambiable por lavado que los suelos ácidos, cuando mayor sea el grado de saturación de las arcillas para el Ca, mayor será la absorción de K por las arcillas.

PERDIDAS DE K POR LAVADO

El K⁺ puede ser arrastrado por un proceso de lixiviación, aunque este fenómeno ocurre la cantidad de K⁺ perdido es muy variable y puede ir desde 1,2 kg/ha, año en un suelo arcilloso hasta 114 kg/ha, año en un suelo arenoso.
Esta diferencia se explica en función de la capacidad de cambio de los suelos y de su grado de saturación para el K+

Los suelos arcillosos tienen una capacidad de cambio más alta y retienen más K+ que los arenosos y tienen por lo tanto menos probabilidades de lavado.

De todas formas, por mucho que el K+ pueda ser lavado normalmente es retenido en el subsuelo. Las pérdidas de lavado son importantes en los suelos muy arenosos de zonas de alta pluviometría.
Como el fósforo, el contenido de potasio en los fertilizantes se expresa en términos de su equivalente en oxido de potasio. Practicamente todos los fertilizantes potásicos son solubles en agua y consisten fundamentalmente en combinaciones con cloruros, sulfatos, nitratos o polifosfatos.

CLORURO POTÁSICO (Cl K). (60% K₂O). Es el producto más ampliamente utilizado como fertilizante potásico ya sea para su utilización como fertilizante potásico ya sea para su utilización directa o para la manufactura de abonos complejos. Normalmente se presenta en forma de pequeños cristales de difícil aplicación, aunque también se da en formas "granulares" constituidas por agregados de cristales con formas irregulares pero de mayor utilidad pues se distribuyen más fácilmente.

SULFATO POTÁSICO (SO₄K₂). (50% K₂O). Su comportamiento como fuente de potasio es similar al ClK, pero tiene la ventaja de suministrar a la vez cantidades importantes de azufre.

SULFATO POTÁSICO-MAGNÉSICO (SO₄K₂, SO₄Mg). Es una doble sal que contiene un 22% de K₂O y un 18% MgO. Tiene la ventaja de suministrar a la vez que K, Mg y S de interés para los suelos deficientes en estos elementos.

NITRATO POTÁSICO (NO₃K). Contiene un 44% K₂O y un 13% de N. Agronómicamente es una fuente excelente tanto de N como de K, pero sus costes de producción son muy elevados y se utiliza fundamentalmente para horticultura y como componente de abonos líquidos.
<table>
<thead>
<tr>
<th>Nutrientes</th>
<th>Contenido (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrógeno</td>
<td>13</td>
</tr>
<tr>
<td>Fósforo</td>
<td>60</td>
</tr>
<tr>
<td>Cloruro potásico</td>
<td>60</td>
</tr>
<tr>
<td>Sulfato potásico</td>
<td>50</td>
</tr>
<tr>
<td>Sulfato potásico magnesio</td>
<td>22</td>
</tr>
<tr>
<td>Nitrato potásico</td>
<td>44</td>
</tr>
<tr>
<td>Magnesio</td>
<td>18</td>
</tr>
<tr>
<td>Sulfato potásico</td>
<td>18</td>
</tr>
<tr>
<td>Polifosfato potásico</td>
<td>40</td>
</tr>
<tr>
<td>Carbonato potásico</td>
<td>68</td>
</tr>
<tr>
<td>Bicarbonato potásico</td>
<td>47</td>
</tr>
</tbody>
</table>
V.- NITROGENO

El nitrógeno es el elemento clave del crecimiento vegetal. Es un constituyente de las proteínas, clorofila, y ácidos nucleicos. El nitrógeno puede ser absorbido por las plantas en dos formas: ion amonio \((\text{NH}_4^+)\) o en forma de ion nitrato \((\text{NO}_3^-)\). La mayor parte del nitrógeno utilizado por las plantas es en forma de nitrato \((\text{No}_3^-)\) debido a 2 razones:

1° El ion nitrato es más móvil en el suelo, se traslada con la solución del suelo a las raíces, mientras que las formas \(\text{NH}_4^+\) se adhieren a las superficies de las partículas del suelo y

2° Las dos formas de nitrógeno \(\text{NO}_3^-/\text{NH}_4^+\) solo se dan a la vez en muy pequeñas proporciones.

Bajo condiciones adecuadas de temperatura, aireación y humedad los microorganismos convierten las formas amoniacales en nitratos.

FIJACION DE NITROGENO.

La mayor fuente de N en el suelo proviene de la acción microbiana en la cual el N atmosférico \((\text{N}_2)\) es tomado del suelo y transformado en N disponible para las plantas. Existe una fijación simbiótica, fundamentalmente por las bacterias asociadas a las leguminosas, que puede aportar unas cantidades entre 50 y 280 kg de N por hectárea y año, cantidades que en determinadas condiciones cubren los requerimientos de este elemento.

En la fijación no simbiótica, tipos específicos de microorganismos que viven libremente en el suelo, utilizan el \(\text{N}_2\) para la formación de sus constituyentes y lo devuelven al suelo a su muerte. Las cantidades aportadas por la fijación no simbiótica varían entre 5 y 8 kg de N/ha.
MINERALIZACIÓN

La mayor parte del N presente en el suelo está en formas orgánicas y solamente un 2% de este nitrógeno se torna disponible para las plantas anualmente.

El N proveniente de la Materia Orgánica se transforma en N utilizable a través de una serie de reacciones que se denominan en conjunto como "Mineralización del nitrógeno orgánico". Este proceso se realiza en 3 reacciones que incluyen diferentes tipos de microorganismos:

a) Aminización: en la que se produce una descomposición hidrolítica de las proteinas, liberando aminoácidos y aminas.

\[\text{proteínas} \rightarrow R-\text{NH}_2 + \text{CO}_2 \]

b) Ammonificación, los aminoácidos y aminas liberados son utilizados con la formación de compuestos amoniacales

\[R-\text{NH}_2 + \text{H}_2\text{O} \rightarrow \text{NH}_3 + R-\text{OH} \]

Estos grupos \(\text{NH}_3 \) pueden seguir diferentes caminos:

a) Pueden ser convertidos a nitritos y nitratos por el proceso de nitrificación.

b) Pueden ser absorbidos directamente por las plantas

c) Pueden ser utilizados por microorganismos

d) Pueden ser retenidos en formas no disponibles entre las láminas de determinadas arcillas.

NITRIFICACIÓN

Parte del \(\text{NH}_4^+ \) liberado por el proceso de mineralización es convertido a formas nitrato. Este proceso se realiza en 2 pasos y a través de la acción de los tipos de bacterias:

- Nitrosomonas y Nitrobacter

\[2\text{NH}_4^+ + 3\text{O}_2 \rightarrow 2\text{NO}_2^- + 2\text{H}_2\text{O} + 4\text{H}^+ \]
Nitrosomonas

\[2\text{NO}_2^- + \text{O}_2 \rightarrow 2\text{NO}_3^- \]
Nitrobacter
Es difícil predecir la cantidad de N mineral que se libera de la Materia Orgánica, pues estos procesos dependen de los cambios en la población microbiana del suelo y por lo tanto, de todos los demás factores que influyen sobre ella como son el pH, temperatura, humedad, estructura y drenaje.

Nitrificación Relativa en el suelo por las bacterias

Relación entre el pH y la nitrificación

Porcentaje de nitrificación

Nitrificación a diferentes temperaturas del suelo
Valores muy bajos de pH reducen la acrividad biológica. El clima juega un papel muy importante, por debajo de 40°C la actividad de los microorganismos es muy pequeña, pero se acelera rápidamente a medida que aumenta la temperatura. Igualmente la humedad del suelo es muy importante, los suelos secos son inactivos pero de la misma forma si la estructura y drenaje del suelo es tan mala que predominan los encharcamientos la mineralización cesa y son más factibles las pérdidas de N por desnitrificación.

PERDIDAS DE NITROGENO DEL SISTEMA

LAVADO

El ión \(\text{NO}_3^-\) es la forma de N más susceptible de ser eliminada por lavado. Los iones \(\text{NH}_4^+\) son también muy solubles en agua, pero su carga positiva les mantiene retenidos como cationes de cambio resistiendo al lavado. Las pérdidas de nitratos por lavado son mayores cuanto mayor cantidad de agua atraviese el suelo y cuanto menor sea la actividad biológica del cultivo para poder utilizar los nitratos que se producen rápidamente del proceso de nitrificación.

PERDIDAS GASEOSAS

El N del suelo puede perderse a través de dos mecanismos que producen formas gaseosas de N que escapan a la atmósfera: la desnitrificación y la volatilización del amonio.

Las mayores pérdidas se producen por desnitrificación, ocurre cuando las condiciones de aireación son malas y la cantidad de \(O_2\) libre en el suelo es limitante.

En estas condiciones una serie de bacterias utilizan los nitratos \(\text{NO}_3^-\) como aceptor de electrones (en vez del \(O_2\)) liberando \(N_2\) volátil a la atmósfera.

La desnitrificación es un proceso muy rápido y se producen pérdidas considerables aunque las condiciones favorables para la desnitrificación solo duren un día o menos. Se estima que las pérdidas por desnitrificación en los cultivos pueden ser de un 10-20% de todos los nitratos formados o añadidos por los fertilizantes.
Las condiciones que favorecen la desnitrificación son:

a) Falta de O_2 libre en el suelo (encharcamientos)
b) Buen suministro de materia orgánica oxidable
c) Suelos ácidos poco profundos en condiciones cálidas.

Las perdidas de N por la volatilización del amonio tienen lugar cuando el ión NH_4^+ está disuelto en una solución básica. Las mayores perdidas ocurren en las aplicaciones superficiales de fertilizantes de N en forma amoniacal o de urea.

Las perdidas por volatilización son normalmente menores al 10%. Para minimizar estas perdidas es conveniente mezclar el fertilizante con el suelo o si se aplica en superficie lavarlo con riego o lluvia para favorecer que se incorpore lo más rápidamente posible al suelo.

BALANCE DEL NITROGENO

El N más que ningun otro elemento, está sujeto a un complejo sistema de entradas, perdidas y reacciones interrelacionadas. Un manejo adecuado de este elemento requiere conocer estas relaciones y comparar sus magnitudes.

El esquema siguiente presenta en valores medios de kg N/ha los cambios experimentados por el N en un sistema de pastoreo sobre una pradera mixta: graminea-trebol.
<table>
<thead>
<tr>
<th>FUENTES DE NITROGENO</th>
<th>% de la fuente original</th>
<th>CANTIDAD DE N (Kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicialmente en el suelo</td>
<td></td>
<td>3992</td>
</tr>
<tr>
<td>N DISPONIBLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N mineralizado(a partir de M.O)</td>
<td>2% del N inicial</td>
<td>80</td>
</tr>
<tr>
<td>Fijación simbiótica o libre</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Adición de fertilizantes</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Precipitación(lluvia, rocío...)</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Total disponible</td>
<td></td>
<td>208</td>
</tr>
<tr>
<td>PERDIDAS DE N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESNITRIFICACION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>De los fertilizantes</td>
<td>15% del N aplicado</td>
<td>15</td>
</tr>
<tr>
<td>Del N mineralizado</td>
<td>5% del total miner.</td>
<td>4</td>
</tr>
<tr>
<td>UTILIZACION CULTIVO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>De los fertilizantes</td>
<td>55%</td>
<td>55</td>
</tr>
<tr>
<td>Del N mineralizado</td>
<td>45%</td>
<td>4</td>
</tr>
<tr>
<td>De la fijación</td>
<td>50%</td>
<td>10</td>
</tr>
<tr>
<td>De la precipitación</td>
<td>100%</td>
<td>8</td>
</tr>
<tr>
<td>Total perdidas</td>
<td></td>
<td>132</td>
</tr>
</tbody>
</table>

N INMOVILIZADO POR ACTIVIDAD MICROBIANA		
Del N del fertilizante no desnitrificado	45%	30
Del N mineralizado	55%	40
Del N Fijado	50%	10
Total inmovilizado		80

(Estos valores son una guía aproximada para un tipo de suelo medio)
FACTORES QUE INFLUYEN EN LA NITRIFICACION

Los factores que influyen en la actividad de las bacterias nitrificantes tienen un marcado efecto sobre la cantidad de nitratos producidos y por lo tanto tienen influencia en la utilización del N por las plantas.

Suministro del ion amonio

El suministro de este ion es el primer requerimiento para la nitrificación. Si las condiciones no favorecen la liberación de NH₄⁺ a partir de la Materia orgánica (o de los fertilizantes) no habrá tampoco nitrificación. Las mismas condiciones favorables de temperatura y humedad para la nitrificación lo son también para la amonización. Pero si la relación C/N es muy grande, el NH₄⁺ liberado será utilizado por los organismos heterotróficos para descomponer la Materia orgánica.

Solo cuando la relación C/N disminuye a 20 o 25 empieza a liberarse N mineral.

Este fenómeno es importante en la práctica agrícola. Cuando se han añadido al suelo cantidades importantes de residuos vegetales con pequeñas aportaciones de N, este N será utilizado por los microorganismos para la descomposición de los residuos orgánicos. Si inmediatamente se siembra algún cultivo puede darse una deficiencia de N, lo que puede evitarse con la aportación de cantidades suficientes de fertilizantes nitrogenados.
Población de organismos nitrificantes

Los suelos difieren en su facilidad para nitrificar los compuestos amoniaca. Los bajo condiciones similares de \(pH \), humedad y nivel de NH\(_4\). Un factor que puede ser responsable de estas diferencias es el \(n\)° de microorganismos presentes en el suelo. La presencia de poblaciones de diferente tamaño originaría un retraso entre el momento de la adición de NH\(_4\) y la salida real del N mineralizado, pero debido a la tendencia de las poblaciones a multiplicarse rápidamente en presencia de una cantidad de sustrato suficiente, la cantidad total de nitrificación no tendría porque estar afectada.

Reacción en el suelo

El rango de \(pH \) en el cual tiene lugar la nitrificación varía generalmente desde 5,5 hasta 10, con un óptimo en 8,5.

Sin embargo se sabe que hay nitrificación a valores de \(pH \) de 4,5, y hay evidencias de nitrificación en pastos con \(pH \) de 3,8. Las bacterias nitrificantes necesitan una fuente adecuada de Ca y P así como un balance adecuado de Fe, Cu y Mn. Los requerimientos exactos de estos elementos no han sido determinados todavía.

Aireación

Las bacterias nitrificantes son organismos aerobios obligados. No producen nitratos en ausencia de oxígeno.
La máxima nitrificación tiene lugar cuando el porcentaje de O_2 alcanza el valor de 20, que es aproximadamente la misma concentración de este gas en la atmósfera superior al suelo.

Esto refleja la importancia de mantener unas condiciones que permitan la rápida difusión de los gases en el suelo. Suelos con texturas gruesas o con buena estructura aseguran el suministro de O_2 adecuado para las nitrobacterias.

Humedad

Las nitrobacterias son más sensibles al exceso de humedad en el suelo que a las condiciones de sequía.

![Gráfico de nitrógeno en ppm](image)

Como se observa en el gráfico, 150 ppm de N en forma de Sulfato amónico fue mineralizado en su totalidad a los 28 días con una presión de 7 bares (condiciones de relativa sequía), mientras que en condiciones de mayor humedad (15 bares) solo se nitrificó la mitad. Las nitrobacterias funcionan bien en suelos moderadamente secos.

Temperatura

Las relaciones entre la nitrificación y la temperatura han sido estudiadas desde hace mucho tiempo. En la gráfica siguiente se observan los resultados de aplicar un rango de 1° entre 16 y 30°C e incubándose durante periodos de tiempo diferentes.
La nitrificación tuvo lugar a todas las Ta del suelo, pero el mayor porcentaje de nitrificación se obtuvo a los 30°C.

Las bajas Ta del suelo en invierno pueden evitar las pérdidas del N aplicado fuera de la estación, ya que al inhibirse la nitrificación este N amoniaco queda retenido. Sin embargo, en condiciones reales las Ta no permanecen constantes y son las fluctuaciones las que determinan la cantidad de mineralización durante el periodo invernal. A una Ta de 2,5°C, las variaciones en la Ta del suelo pueden permitir una cantidad apreciable de nitrificación.
FACTORES QUE INFLUYEN EN LA PRODUCCION Y APLICACION DE N

TIPO DE VEGETACION.

Las gramíneas responden muy bien a la fertilización nitrogenada. El Raigrass italiano responde mejor que el inglés, y el Raigrass híbrido tiene una respuesta intermedia entre ambos.

Otras especies como el Dactilo, Fleo y festuca aunque tan gan techo productivo menor, también responden muy bien al N.

El efecto de la aplicación de N sobre una pradera mixta es particularmente complejo. Las leguminosas cubren normalmente sus necesidades de N a través de la simbiosis que establecen en sus raíces con bacterias fijadoras del N atmosférico que ceden a la planta. El nivel de fijación de N es paralelo al contenido de trebol de la pradera y el contenido de trebol está seriamente afectado por las aplicaciones de N.

Existe una diferencia considerable a la respuesta al N entre una pradera de gramínea y una pradera mixta. Para conseguir altas producciones las gramíneas necesitan fuertes impulso de N mientras que la presencia de leguminosas en una pradera hace mantener una productividad elevada a niveles moderados de aplicación nitrogenada sin considerar otras funciones fundamentales de las leguminosas como componentes de las praderas como son: la distribución estacional complementaria a las gramíneas y el incremento de la calidad proteica de la dieta.
CLIMA Y SUMINISTRO DE AGUA

Las respuestas a la fertilización nitrogenada varían en un mismo año entre localidades diferentes y en un mismo lugar pueden variar ampliamente de un año a otro. Estas variaciones son debidas a los diferentes tipos de suelos, y a las condiciones climáticas. Los factores climáticos más importantes son la pluviometría, seguida de la Tª y la radiación solar. En la 1ª parte de la estación de crecimiento las bajas Tªs y la baja radiación son los factores más limitantes, pero en la 2ª mitad de la estación de crecimiento, este está limitado por la baja pluviometría.

Tª Y CRECIMIENTO PRIMAVERAL

En las praderas con predominio de gramíneas la respuesta de la fertilización nitrogenada en primavera es 2-3 veces mayor que en el resto del año, debido a que en este momento las gramíneas están en su fase de crecimiento más activo. La presencia de leguminosas (trebolo) que inician su crecimiento activo más tardiamente que las gramíneas hace disminuir en parte la respuesta total de primavera. Sin embargo al final de primavera, a medida que ascienden las Tªs el crecimiento del trebolo se estima y la fijación de nitrógeno se activa; en estas condiciones la aplicación de N solo reemplaza el N que las leguminosas suministrarian. Por eso las respuestas a final de estación son muy pequeñas.

Un aprovechamiento temprano de las praderas es fundamental ya sea para reservar la producción para un corte de conservación como para adelantar la salida al pasto del ganado.

El sistema de "Sumatorio de las Tªs" suministra una ayuda útil informándonos de como las Tªs del suelo van ascendiendo a finales de invierno principio de primavera antes de que el pasto inicie el crecimiento.

La aplicación de N para potenciar el crecimiento de la hierba una vez este haya comenzado, está relacionada con los cambios de Tª. Debemos hacer un balance entre aplicar el N demasiado pronto, con las correspondientes perdidas por desnitrificación o lavado, o aplicarlo demasiado tarde con la perdida del potencial productivo. El objetivo es suministrar el N suficiente cuando el crecimiento se inicie, para maximizar su respuesta.
EL SISTEMA SUMATORIO DE T\textdegree - 200.

El sistema T-sum. está basado en ensayos desarrollados en Holanda e Inglaterra desde 1979. Se toman las T\textdegrees diarias, se calcula la media y se acumulan los valores desde el 1o de Enero. Las medias negativas (no los valores de T\textdegrees negativos) se ignoran. La 1a aplicación de N se realiza cuando el sumatorio de las T\textdegrees alcanza 200\textdegree C.

1.- Termometro de maximas y minimas colocado fuera de la ca
2.- Sumar las "medias" de la T\textdegree del aire en grados centigrados desde el 1 de Enero a la misma hora cada dia.
3.- Sumar todos los valores de las medias diarias, ignorando las medias negativas.

OTROS SISTEMAS.

Existen otros sistemas basados más en la T\textdegree del suelo que en la del aire, y en los que las mediciones se empiezan a realizar en Febrero.

Estos sistemas se llaman "valor-T\textdegree 100\textdegree" y "T-suelo 150\textdegree". En esta 1a se toman las temperaturas a 10 cm del suelo a las 9 de la mañana desde el 1er dia de Febrero. En el 2o se toman las temperaturas del suelo a 30 cm de profundidad.

Estos sistemas se han comparado con el T-200\textdegreec y son todos bastante efectivos. Hay un rango considerable de T\textdegrees acumuladas dentro de cada sistema en el cual se obtiene la mejor producción. Existe un periodo de 2 o 3 semanas alrededor de la fecha T-sum 200\textdegree en el cual se da la probabilidad de obtener el 90\% o más de maxima producción.

Todos los ensayos han demostrado que hay una flexibilidad alrededor de la fecha obtenida para el valor T-sum 200. Este método no da la fecha exacta para aplicar el N, pero si marca la fecha en la que raramente sea incorrecta la aplicación de N.

No hay una clara evidencia de que la aplicación de N en diferentes fechas según el sistema T-sum. afecte a la producción total. Pero parece que todos los ensayos se han centrado en localizar la fecha de aplicación para el 1er pastoreo, mas que en relación a un corte de silo.
La Ta del suelo puede servir de ayuda para predecir la fecha de espigado y por lo tanto planificar cuando debe de hacerse un corte de silo. Los datos provenientes de 20 años revelan una estrecha relación entre la media de Ta del suelo (30 cm) en mes de Marzo y la fecha de espigado para el Raygrass S 24.

<table>
<thead>
<tr>
<th>Media de Ta a 30 cm de profundidad en Marzo (°C)</th>
<th>S 24</th>
<th>RG más tardios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inicio de espigado (50% emergencia)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>27 abril</td>
<td>9 mayo</td>
</tr>
<tr>
<td>8</td>
<td>5 mayo</td>
<td>17 mayo</td>
</tr>
<tr>
<td>6</td>
<td>12 mayo</td>
<td>24 mayo</td>
</tr>
<tr>
<td>4</td>
<td>20 mayo</td>
<td>1 junio</td>
</tr>
</tbody>
</table>

(Milk and Meat from Grass. Wilkinson, J.M.)

Actualmente se está intentando relacionar los valores a 10 cm de profundidad para dar una predicción sobre la fecha de inicio de espigado, lo que ayudaría a planear la fertilización a los de Abril para conseguir un silo de un valor de digestibilidad determinado en Mayo.

En los raigrasses el inicio de espigado (50% de las espigas emergencia) significa un valor aproximado de digestibilidad de 67 o un valor de Energía metabolizable de 10,5 MJ/Kg MS. Para conseguir esta calidad, es necesario cortar bastante antes que la fecha determinada, dependiendo de cuántos días se van a requerir para cosechar toda la superficie destinada a silo.
FERTILIZANTES NITROGENADOS

El N de los fertilizantes nitrogenados está sometido también a las reacciones de inmovilización y mineralización anteriormente comentadas. Conocer las características importantes del comportamiento de los fertilizantes nitrogenados es importante para conseguir una mayor eficacia de su utilización.

NITRATO AMONICO (33,5 - 34,5 % N) - NITRATO AMONICO CALCICO (26 % (NH₄NO₃)

Ambos productos difieren solamente en que el Nitrato amónico calcico se obtiene por la adición al nitrato amónico de un 40% de dolomita o carbonato calcico. Este carbonato calcico es añadido a la solución de NH₄NO₃ antes del proceso de concentrado y granulado. Teóricamente el carbonato cálcico neutraliza la acidez producida por la nitrificación del ion amonio, el cual es inicialmente absorbido por las arcillas hasta su nitrificación. Aplicado superficialmente en suelos alcalinos o calcáreos puede producirse algunas pérdidas de NH₄ por volatilización.

Ambos materiales son fáciles de manejar, sin embargo el nitrato amónico es muy higroscópico y no se puede dejar en zonas húmedas con los sacos abiertos durante mucho tiempo.

NITROSULFATO AMONICO. (26% N)

Es una doble sal de nitrato amónico y sulfato amónico (NH₄NO₃, (NH₄)₂SO₄) obtenida por neutralización con NH₃ de una mezcla de Ac. Nitrico y Ac. Sulfúrico.

Su desarrollo en el suelo es similar al Nitrato amónico. Su facilidad de aplicación y almacenamiento son buenas y es un excelente fertilizante no solo nitrogenado, sino como aporte de S a los suelos.

SULFATO AMONICO ((NH₄)₂SO₄)

Contiene 20,5 % N y un 23,4 % S. Es una de las fuentes más antiguas de N en forma amoniacal. Sus características de aplicación y almacenamiento son buenas y al igual que el Nitrosulfato amónico es una fuente excelente de S para los suelos.
Estas formas de nitrógeno debido a la presencia del ion súfato tienden a tener una reacción ácida en los suelos más que otras fuentes de N como el nitrato amónico.

Estudios de larga duración han demostrado que el uso continuado de sulfato amónico sin aplicaciones de cal reducen el pH del suelo a niveles no deseables. Sin embargo, cuando en el suelo se realizan encalados o el nivel de Ca libre era alto el sulfato amónico resultaba tan eficaz como otras fuentes de N.

UREA (CO(NH₂)₂)

La urea se obtiene por reacción del NH₃ con CO₂ en condiciones de presión y temperaturas elevadas. Contiene el 46% de N más elevado (45%) de todos los fertilizantes sólidos disponibles.

La urea se hidroliza en el suelo rápidamente formando CO(NH₂)₂ + 2H₂O -> (NH₄)₂CO₃

Carbonato amónico. El carbonato amónico es un compuesto muy inestable y se descompone en NH₄⁺ y CO₂. Los iones NH₄⁺ liberados se absorben en la fracción coloidal del suelo y posteriormente son nitrificados.

La hidrolisis de este material está muy incrementada por la presencia de la encina ureasa, la cual se encuentra en cantidades variables en los suelos. En la mayor parte de los suelos está presente en concentraciones suficientes para favorecer rápidamente la conversión de la urea en NH₄⁺. Una vez en este estado la urea se comporta como cualquier otra fuente de nitrógeno. La urea es un excelente fertilizante nitrogenado, sin embargo posee varias características específicas que deben conocerse para su utilización correcta. La principal está relacionada a su alta capacidad de hidrolisis. Si la urea se aplica en superficie en condiciones secas aproximadamente un 10% o más del N puede ser perdido por volatilización pues se hidroliza rápidamente a carbonato amónico. Esto es más acusado en los suelos calcáreos y debilmente arenosos. Si la urea es arrastrada por el agua dentro del suelo después de su aplicación se pierde muy poco nitrógeno y es tan efectiva como el nitrato amónico.
AMONIACO ACUOSO (21-29 % N)

El amoníaco acuoso es amoníaco disuelto en agua en condiciones de presión ligera. Los costes de aplicación son más caros que para los fertilizantes sólidos, pero estos costes no aumentan en función del nº de hectáreas inyectadas y el precio por Kg se vuelve relativamente barato para unos niveles altos de aplicación.

Esta solución se inyecta a una profundidad de 10-15cm y es rápidamente absorbida por la arcilla y M.O.

Una utilización eficiente requiere unas buenas condiciones de suelo y no es deseable su aplicación en suelos demasiado húmedos o demasiado secos, ni en suelos muy compactados y pedregosos, ni en suelos con un contenido muy bajo de arcilla.

Se ha demostrado que las perturbaciones mecánicas originadas por la inyección al suelo no parecen afectar para nada la capacidad productiva de los pastos, una vez inyectado el amoníaco se comporta igual de efectivo que el nitrato amónico. Aplicaciones de amoníaco acuoso a finales de invierno o en primavera consiguen las mismas producciones anuales que con aplicaciones parciales de nitrato amónico, aunque la respuesta para un aprovechamiento temprano es menor y el N raramente dura hasta la mitad del verano.

SOLUCION NITROGENADA (33-35 Kg N/ 100 l)

Son soluciones acuosas de nitrato amónico o urea sin presión.

La aplicación superficial de estas soluciones quema la cubierta vegetal por lo que su aplicación se suele realizar a través de sistemas gota a gota lo que hace disminuir considerablemente los daños producidos. Su eficacia como fertilizante es similar a los abonos sólidos salvo para los suelos alcalinos o muy arenosos. Los riesgos de pérdidas de N se aumentan cuando la mezcla contiene altas proporciones de urea.

Los patrones de la nitrificación de las formas amoniacaes u orgánicas indican que en condiciones de clima templado, con suelos bien aireados y húmedos la liberación del N ocurre lentamente, lo que reduce las pérdidas de este elemento por lavado. Las formas amoniacaes son retenidas debilmente por los coloides del suelo, evitando así su perdida.
Las formas nitrícas son más rápidamente utilizables, pero son susceptibles de ser eliminadas por lavado. En suelos de texturas gruesas con alta pluviometría estas pérdidas pueden ser importantes.

La mayor parte de las formas amoniacales tienen una reacción ácida en el suelo y su uso continuado puede originar bajas importantes del pH.
VI.- ABONADO ORGÁNICO

Los abonos orgánicos se utilizan de forma habitual en las explotaciones, aunque estos materiales se aplican al suelo normalmente sin tener en cuenta su función como elementos fertilizantes. Conocer su valor fertilizante permite mejorar su utilización, reducir los riesgos de polución y disminuir los costes de las necesidades de fertilizantes minerales.

El pastoreo facilita el reciclaje de los nutrientes al suelo a través de las excretas del ganado, sin embargo una parte importante de estas excretas son almacenadas en forma de estiercos y purines.

Una buena parte de las necesidades de las praderas pueden ser cubiertas por estos materiales, lo que hace disminuir considerablemente el costo del abonado. Antes de planear la compra del abono mineral ha de considerarse: las necesidades totales de la pradera, que vienen dadas por el análisis de suelo y manejo específico y las posibilidades reales de aplicar el abono orgánico a la pradera en cuestión. De esta forma las necesidades de abono mineral serían:

<table>
<thead>
<tr>
<th>Nutrientes aportados por el abono orgánico</th>
<th>Necesidades a cubrir por abono mineral</th>
</tr>
</thead>
</table>

El mayor problema que plantean los abonos orgánicos para integrarlos dentro de los programas de fertilización es la amplia variación que presentan en su composición química, la cual depende de muchos factores: tipo de ganado, dieta, sistema de recogida o almacenaje, cantidad de agua añadida etc.

Aunque los análisis químicos de una muestra puedan indicarnos las cantidades de nutrientes presentes, su composición varía incluso dentro de muestras individuales. Debido a esto y a que no existe todavía para nuestras condiciones un criterio claro o norma sencilla que permita su dosificación, la única forma de estimar su valor fertilizante es basándonos en los valores medios de composición de estiercos y purines.
<table>
<thead>
<tr>
<th></th>
<th>M.S.</th>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUNNEY y MOLLOY (1975)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irlanda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Estiercol vacuno sin paja</td>
<td>17</td>
<td>0,33</td>
<td>0,18</td>
<td>0,51</td>
</tr>
<tr>
<td>- Estiercol vacuno con paja</td>
<td>20</td>
<td>0,45</td>
<td>0,23</td>
<td>0,82</td>
</tr>
<tr>
<td>FERRER, C. (1980)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guipúzcoa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Estiercol vacuno</td>
<td>20</td>
<td>0,41</td>
<td>0,35</td>
<td>0,47</td>
</tr>
<tr>
<td>ADAS (1980)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gran Bretaña</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Estiercol vacuno</td>
<td>25</td>
<td>0,60</td>
<td>0,30</td>
<td>0,70</td>
</tr>
<tr>
<td>- Estiercol cerdo</td>
<td>25</td>
<td>0,60</td>
<td>0,60</td>
<td>0,40</td>
</tr>
<tr>
<td>- Gallinaza con cama</td>
<td>70</td>
<td>1,70</td>
<td>1,80</td>
<td>1,30</td>
</tr>
<tr>
<td>- Gallinaza</td>
<td>70</td>
<td>2,40</td>
<td>2,20</td>
<td>1,40</td>
</tr>
<tr>
<td>- Gallinaza desecada</td>
<td>70</td>
<td>4,20</td>
<td>2,80</td>
<td>1,90</td>
</tr>
<tr>
<td>MURPHY, L.S. (1978)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Estiercol vacuno</td>
<td>21</td>
<td>0,56</td>
<td>0,23</td>
<td>0,60</td>
</tr>
<tr>
<td>- Estiercol ovino</td>
<td>35</td>
<td>1,40</td>
<td>0,48</td>
<td>1,20</td>
</tr>
<tr>
<td>- Estiercol caballo</td>
<td>30</td>
<td>0,69</td>
<td>0,23</td>
<td>0,72</td>
</tr>
<tr>
<td></td>
<td>M.S.</td>
<td>N</td>
<td>P$_2$O$_5$</td>
<td>K$_2$O</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td>----</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>LECOMTE, L. (1980)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bélgica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Purín de vacuno</td>
<td>8,3</td>
<td>0,36</td>
<td>0,22</td>
<td>0,58</td>
</tr>
<tr>
<td>KOLEMBRANDER, G. (1981)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holanda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Purín de vacuno</td>
<td>9,5</td>
<td>0,43</td>
<td>0,20</td>
<td>0,49</td>
</tr>
<tr>
<td>ADAS (1980)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gran Bretaña</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Purín de vacuno sin diluir</td>
<td>10</td>
<td>0,50</td>
<td>0,20</td>
<td>0,50</td>
</tr>
<tr>
<td>- Purín cerdo</td>
<td>10</td>
<td>0,60</td>
<td>0,40</td>
<td>0,30</td>
</tr>
<tr>
<td>- Purín gallina</td>
<td>25</td>
<td>1,40</td>
<td>1,10</td>
<td>0,60</td>
</tr>
<tr>
<td>GOMEZ IBARLUCEA, C. (1981)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galicia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Purín vacuno</td>
<td>7</td>
<td>0,30</td>
<td>0,15</td>
<td>0,45</td>
</tr>
<tr>
<td>TUNNEY y MOLLOY (1975)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irlanda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Purín de vacuno</td>
<td>8</td>
<td>0,38</td>
<td>0,14</td>
<td>0,51</td>
</tr>
<tr>
<td>- Purín cerdo</td>
<td>8</td>
<td>0,43</td>
<td>0,41</td>
<td>0,51</td>
</tr>
<tr>
<td>- Purín gallina</td>
<td>24</td>
<td>1,42</td>
<td>1,17</td>
<td>0,69</td>
</tr>
</tbody>
</table>
PERDIDAS DE NUTRIENTES DURANTE EL ALMACENAMIENTO

ESTIÉRCOLES.

Cuando el estiércol se almacena fuera, al exterior, una parte de sus nutrientes se pierde por lavado. Aproximadamente un 20% del N, 7% del P₂O₅ y un 35% del K₂O se pierden durante la estación. Estas pérdidas serán mayores cuanto más extendidos y finos sean los montones en los que se apila el estiércol.

Aproximadamente el 10% del Nitrógeno se pierde en forma gaseosa a la atmósfera por volatilización. Estas pérdidas también varían según sea el método de almacenamiento.

Para minimizar las pérdidas de nutrientes durante la fase de almacenamiento, los estiércoles deben de:
- Almacenarse sobre una base de hormigón u otro material impermeable
- Moverse lo menos posible
- Compactarlo lo más posible
- Protegerlo de la lluvia

PURINES

Las pérdidas de nutrientes de los purines están confinadas exclusivamente al Nitrógeno, el cual se escapa a la atmósfera como amoníaco o por desnitrificación como N₂.

La cantidad de N perdido depende de muchos factores: condiciones climáticas, alimentación del ganado, aireación de la fosa, etc.

En general las pérdidas oscilan entre un 10% y un 20% si el purín no se agita.

DISPONIBILIDAD DE NUTRIENTES

No todos los nutrientes de los purines o estiércoles están disponibles para los cultivos en la misma estación de su aplicación. Parte de ellos están en forma orgánica y pueden ser utilizados en años posteriores. Valorar estas proporciones es muy complejo, por lo que normalmente para su utilización práctica se ignora.
Proporción de nutrientes disponibles en la estación de aplicación

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% disponible</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTIERCOL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuno</td>
<td>25</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Cerdo</td>
<td>25</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Gallinaza con cama</td>
<td>60</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>Pollinaza</td>
<td>60</td>
<td>60</td>
<td>75</td>
</tr>
<tr>
<td>Gallinaza desecada</td>
<td>60</td>
<td>60</td>
<td>75</td>
</tr>
</tbody>
</table>

| PURINES |
Vacuno (10%MS)	30	50	90
Cerdo (10%MS)	65	50	90
Gallina (25%MS)	65	50	90

Las cantidades aquí indicadas suponen que los purines son aplicados en primavera. (ADAS, 1980).

NUTRIENTES DISPONIBLES

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kg/Tm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTIERCOL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vacuno</td>
<td>1,5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Cerdo</td>
<td>1,5</td>
<td>4</td>
<td>2,5</td>
</tr>
<tr>
<td>Gallinaza cama</td>
<td>10</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Pollinaza</td>
<td>14,5</td>
<td>13</td>
<td>10,5</td>
</tr>
<tr>
<td>Gallinaza desec.</td>
<td>25</td>
<td>17</td>
<td>14</td>
</tr>
</tbody>
</table>

PURINES

<table>
<thead>
<tr>
<th></th>
<th>Kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuno (10%MS)</td>
<td>1,5</td>
</tr>
<tr>
<td>Cerdo (10%MS)</td>
<td>4</td>
</tr>
<tr>
<td>Gallina (25%MS)</td>
<td>9,1</td>
</tr>
</tbody>
</table>

Según valores dados por ADAS (1980).
La disponibilidad del N en los purines y estiércoles es muy variable y depende de la composición del purín, de la cantidad y método de aplicación, del tiempo y estación de aplicación y del grado de incorporación al suelo.

En cuanto al N se refiere las aplicaciones de primavera son más efectivas que las realizadas en cualquier otra época del año. El N disponible de los purines que se aplica en otoño es más probable que se pierda durante el invierno por lavado o por desnitrificación. Las pérdidas de fósforo y potasio durante el invierno son pequeñas.

<table>
<thead>
<tr>
<th>Aplicación</th>
<th>% N disponible para el crecimiento de primavera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otoño</td>
<td>0 - 20</td>
</tr>
<tr>
<td>Pcpo. Invierno</td>
<td>30 - 50</td>
</tr>
<tr>
<td>Final Invierno</td>
<td>60 - 90</td>
</tr>
<tr>
<td>Primavera</td>
<td>90 - 100</td>
</tr>
<tr>
<td>Verano</td>
<td>Respuesta muy variable y dependiente del tiempo</td>
</tr>
</tbody>
</table>

Relación entre los nutrientes aportados por el purín y las necesidades para una base de 200 Kg de N. (Gomez Ibarlucea, C. 1981)
El purín de vacuno tiene por lo general un alto contenido en nitrógeno y potasio y relativamente bajo en fósforo. Como se ve en la gráfica anterior, si se cubren las necesidades de N con el purín no se llegan a cubrir las necesidades de fósforo y se sobrepasan los requerimientos de potasio.

Es más recomendable ajustar los aportes para que cubran las necesidades de potasio o del nitrógeno (según los casos) y completar el fósforo o el nutrientes que no estén equilibrados en cuanto aporte necesidades.

Considerando los valores medios de N: 0,3%, P₂O₅: 0,15% y K₂O: 0,45% (Gómez Ibarlucea, C. 1981), una dosis media de 20-30 m³ cubriría las necesidades totales de potasio para una parcela en pastoreo, aunque probablemente no se cubrirían las de fósforo ni las de Nitrógeno. Es más recomendable, en las parcelas de pastoreo, complementar el desnivel de P y N con abono mineral, que aplicar mayores dosis de purín.

Debido al alto contenido de K de los purines, hay que controlar las aplicaciones fuertes a las parcelas dedicadas a pastoreo. Es aconsejable aplicar el purín después del 1º pastoreo para evitar riesgos con la hierba de primavera.

En una explotación que cuente con parcelas dedicadas a pastoreo y parcelas dedicadas a corte para conservación es lógico maximizar la utilización de los purines para las zonas de conservación de forraje.

Parcelas para conservación

Las parcelas que vayan a dedicarse para la producción de hierba para silo o heno tienen prioridad en el uso de los purines, porque sus necesidades de fertilización son más elevadas y por lo tanto es lógico disminuir los gastos en base a purín, y porque de esta forma se evitan los problemas de rechazo por los animales.

El purín se aplicará ala salida del invierno o después de un pastoreo previo al corte de la hierba para silo.

Para la obtención de dos cortes de silo, cantidades entre 30 y 50 m³ cubrirían las necesidades totales de potasio y gran parte de las fósforo y nitrógeno.
Necesidades de una pradera para dos cortes de silo

Indice P:1. Indice K:1.

<table>
<thead>
<tr>
<th>Kg/ha</th>
<th>P₂O₅</th>
<th>K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Nutrientes aplicados con 20 m³/ha de purín</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>Necesidad de abono mineral</td>
<td>42</td>
<td>45</td>
</tr>
<tr>
<td>Necesidades para el 2º corte</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Nutrientes aplicados con 15 m³/ha</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Necesidades de abono mineral</td>
<td>26</td>
<td>18</td>
</tr>
</tbody>
</table>

Para este ejemplo se ha considerado los valores medios de riqueza de los purines dados por Gómez Ibarlucea, C (1981) y los porcentajes de nutrientes disponibles en la estación de las ADAS.

Un aspecto importante a resaltar en la utilización de los purines es la posibilidad de contaminación de pantanos o ríos de las zonas próximas, es estos casos es conveniente reducir las dosis en varias aplicaciones en vez de en una sola. Los purines de cerdo son los que presentan mayor riesgo por contaminación de Cu y Zn, sobre todo si se realizan aplicaciones frecuentes con este tipo de material.

Para reducir los riesgos de contaminación se aconseja que el purín esté al menos 60 días en la fosa antes de su distribución y el pasto no debe utilizarse por el ganado antes de 30 días de su aplicación.

Para minimizar la contaminación física del purín debe aplicarse cuando la Hierba esté baja, después de unpastoreo intenso o de un corte de silo.
OTRAS PROPIEDADES DE LOS PURINES Y ESTIERCOLES

Los estiercoles aportan cantidades importantes de Materia orgánica al suelo mejorando su estructura y estimulando la actividad biológica del suelo. En los suelos de textura fina es muy importante para incrementar la estabilidad estructural y tanto en los suelos ligeros como pesados su aplicación mejora la capacidad de retención de agua y la resistencia a la sequía.

Aparte de los nutrientes mayoritarios aportados por los abonos orgánicos, estos contienen cantidades variables de Ca, Mg y varios microelementos, ayudando a mantener los niveles de estos elementos esenciales en el suelo.
Las recomendaciones de abonado (salvo para el N) deben basarse en los análisis de suelo que reflejan el nivel de reservas de los nutrientes en el suelo. Estas recomendaciones van orientadas a que cubran los siguientes aspectos:

- tratar de proporcionar la dosis óptima cuando las respuestas son probables
- establecer una dosis de mantenimiento cuando en el suelo están presentes unos niveles moderados de nutrientes.

Los análisis del suelo dan las cantidades de P y K disponibles en ppm. Estas cantidades vienen expresadas como índices, cada uno de los cuales comprender un intervalo de las cantidades relativas de nutrientes. Estos índices varían entre 0 (deficiencia) y 9 (excésivo) para todos los cultivos.

<table>
<thead>
<tr>
<th>INDICE</th>
<th>P</th>
<th>INDICE</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB</td>
<td>0-4</td>
<td>0</td>
<td>0-60</td>
</tr>
<tr>
<td>OA</td>
<td>5-9</td>
<td>1</td>
<td>61-120</td>
</tr>
<tr>
<td>1</td>
<td>10-15</td>
<td>2</td>
<td>121-240</td>
</tr>
<tr>
<td>2</td>
<td>16-25</td>
<td>3</td>
<td>241-400</td>
</tr>
<tr>
<td>3</td>
<td>26-45</td>
<td>4</td>
<td>401-600</td>
</tr>
<tr>
<td>4</td>
<td>46-70</td>
<td>5</td>
<td>601-900</td>
</tr>
<tr>
<td>5</td>
<td>71-100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Los índices manejados para praderas varían como máximo del 0 al 5, aunque la mayoría de las recomendaciones van orientadas a situarse en el nivel 2, nivel a partir del cual no es probable encontrar respuestas productivas a la aplicación de los fertilizantes.

Todas las recomendaciones varían según el tipo de manejo que se realice; las necesidades de una pradera en pastoreo son menores que en régimen de siega, en donde la extracción de nutrientes es total.

Las cantidades de fertilizantes recomendadas para los niveles 0 y 1 son mayores, pues en estos niveles el elemento determinado está en el suelo en una cantidad deficiente o muy pequeña y se requiere una mayor aportación para asegurar la respuesta productiva a la vez que ir manteniendo un cierto nivel de reservas en
el suelo. A medida que el índice aumenta las recomendaciones son menores y van orientadas a restituir las extracciones de la pradera y a mantener los niveles de nutrientes en el suelo.

Las recomendaciones expuestas a continuación están basadas en los estudios realizados por las A.D.A.S. (Gran Bretaña), INIA (Galicia) y adaptadas o modificadas según nuestras condiciones y según los resultados iniciales de los ensayos anteriormente expuestos.

<table>
<thead>
<tr>
<th>INDICE P</th>
<th>O_B</th>
<th>O_A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASTOREO</td>
<td>120</td>
<td>90</td>
<td>60</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kg P_2O_5/ha</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>INDICE K</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASTOREO</td>
<td>60</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kg K_2O/ha</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>INDICE K</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASTOREO</td>
<td>60</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| PASTOREO | 60 | 30 | | | |
| | | | | | |

<table>
<thead>
<tr>
<th>CORTE SILO/HENO</th>
<th>Kg K_2O/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CORTE</td>
<td>120</td>
</tr>
<tr>
<td>2º y otros</td>
<td>80</td>
</tr>
<tr>
<td>CORTES</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kg K_2O/ha</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>INDICE K</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASTOREO</td>
<td>60</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kg K_2O/ha</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>INDICE K</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASTOREO</td>
<td>60</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| PASTOREO | 60 | 30 | | | |
| | | | | | |

<table>
<thead>
<tr>
<th>CORTE SILO/HENO</th>
<th>Kg K_2O/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CORTE</td>
<td>120</td>
</tr>
<tr>
<td>2º y otros</td>
<td>80</td>
</tr>
<tr>
<td>CORTES</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kg K_2O/ha</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>INDICE K</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASTOREO</td>
<td>60</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kg K_2O/ha</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>INDICE K</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASTOREO</td>
<td>60</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| PASTOREO | 60 | 30 | | | |
| | | | | | |

<table>
<thead>
<tr>
<th>CORTE SILO/HENO</th>
<th>Kg K_2O/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CORTE</td>
<td>120</td>
</tr>
<tr>
<td>2º y otros</td>
<td>80</td>
</tr>
<tr>
<td>CORTES</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kg K_2O/ha</th>
</tr>
</thead>
</table>
Los fertilizantes fosfóricos son fundamentalmente de dos tipos: los que son mayoritariamente solubles en agua y los que mayoritariamente son solubles en ácidos diluidos. El superfosfato y la mayoría de los abonos complejos contienen fosfato soluble en agua, que es más inmediatamente efectivo que los fosfatos solubles en ácido, sobre todo en los suelos con pH neutro y alcalino. Las recomendaciones de fósforo en el índice 2 o superiores pueden hacerse aplicando cantidades mayores cada tres años, esto podría hacerse en los sistemas de aprovechamiento poco intensivos, pero no es recomendable cuando la pradera está sometida a un manejo de cortes regulares.

Todos los fertilizantes potásicos son solubles en agua, pero el potasio no es tan debilmente retenido como el nitrógeno y las pérdidas por lavado son menores. Salvo en las praderas con índice 0 o 1, el potasio sería preferible no aplicarlo (en las praderas de pastoreo) en primavera, para evitar el gran consumo de lujo y evitar riesgos de hipomagnesemias.

Las recomendaciones de Nitrógeno no se basan en el análisis del suelo, anteriormente ya hemos revisado los factores que influyen en la respuesta a dicho nutriente.

Hablar de la fertilización nitrogenada de las praderas obliga a indicar una vez más en el papel del trebol y su incidencia con la aplicación de nitrógeno. El precio de los abonos nitrogenados y la evidencia de la mayor eficiencia de transformación en productos animales de las praderas con alto contenido de trebol, está actualmente desviando el énfasis de la investigación sobre el abono nitrogenado hacia el trebol blanco.

Cuanto más N se aplica a la pradera su contenido de trebol será menor. Dosis superiores a 180-200 Kg N/ha no son recomendables para una pradera mixta, si se desea mantener un adecuado porcentaje de trebol, y a pesar del incremento que aún cabría esperar hasta los 300 o 350 KgN/ha.

Para utilizar el N de forma más eficiente y de forma que permita que menos al contenido de trebol habrá que centrar su aplicación en aquellas épocas del año en las que el crecimiento del trebol es menos activo (primavera-otoño) y alejarlas lo más posible del verano. Casi siempre merece la pena una aplicación algo más fuerte en primavera, ya que en esta época el N disponible en
el suelo es menor y el crecimiento del trebol es más lento que el de las gramineas. De la misma forma como el crecimiento del trebol se vigoriza hacia mitad de estación, no es conveniente aplicar cantidades de N muy fuertes a principios de primavera, si se quiere que el potencial del trebol se manifieste en su totalidad a mitad de estación.

Para praderas en pastoreo una dosis de 100Kg N/ha podría distribuirse así:

- 40 Kg N/ha a principios de primavera
- 30 Kg N/ha después del 1er pastoreo

No añadir nada de N en el resto de la primavera y verano para que pueda manifestarse el potencial del trebol.

A principios de otoño podría aplicarse otra dosis de 30 Kg N/ha, aunque esta dosis puede ser innecesaria si el contenido de trebol es alto.

El uso del N para incrementar la producción de hierba no está economicamente justificado a no ser que la hierba producida sea eficientemente utilizada. Bajo condiciones de pastoreo la hierba ofertada a los animales debe de tener una calidad uniforme. El pastoreo continuo asegura que al animal se le ofrece solamente hierba joven y de alta calidad, pero la producción total de la pradera puede verse afectada e incluso en condiciones muy intensivas la ingestión puede estar limitada. El pastoreo rotacional permite unos períodos más largos de tiempo para el crecimiento (dependiendo del intervalo de defoliaciones), aunque si se desea hierba de alta calidad, este intervalo no debe exceder las 3 o 4 semanas.

El sobrepastoreo deteriora la pradera tendiendo a aparecer plantas invasoras de tipo rastrero, el desarrollo radicular se altera haciendo a la hierba más susceptible a la falta de agua. Por otro lado la poca presión de pastoreo es menos perjudicial para las raíces y para el suelo, pero es tan mala o peor la pradera pues favorece el desarrollo de gramineas invasoras de porte alto.

La utilización de la fertilización nitrogenada y un manejo intensivo tiene que estar basado en unos intervalos entre defoliaciones relativamente cortos. Los intervalos varían según el sistema de pastoreo aplicado, la estación y el tipo de pradera. En un sistema de aprovechamientos frecuentes, las defoliaciones evitan que las gramineas sean muy repetitivas, permitiendo que el trebol sobreviva, aún con cantidades apreciables de N. Por el contrario, defoliaciones muy espaciadas favorecen una rápida
desaparición del trebol.

Los raigrasses perennes, especialmente los de porte rastrero, son los más adaptados a intervalos cortos entre defoliaciones. Una rápida defoliación seguida de un periodo prolongado de descanso, es mejor para la recuperación de la pradera que un periodo prolongado de pastoreo. Aunque se ha comprobado que en los sistemas de pastoreo continuo cada tallo individual tiene una media de 10 días de reposo entre defoliación, el pastoreo continuo produce una pradera con mayor densidad y más resistente al pisoteo y el hecho de que los animales estén más distribuidos que en el pastoreo rotacional puede reducir los daños de compactación del suelo.

Las recomendaciones de nitrógeno para una pradera destinada a cortes de silo o heno pueden variar entre 120-150 Kg N/ha. Si se desea dar dos cortes a la misma pradera la distribución del N sería:

40-60 Kg N/ha a principios-mediados Marzo y cortar para silo

40-60 Kg N/ha después del 1º corte, para un 2º corte a mediados de junio.

No aplicar N en el verano y pastar estas zonas.
En otoño puede aplicarse otra dosis de 30 KgN/ha dependiendo del año y de la presencia de trebol.

El Magnesio es muy susceptible de competencia con otros cationes, fundamentalmente a nivel de absorción radicular. El efecto más directo es el de los iones NH₄⁺, K⁺ y Ca⁺, cuando su contenido es bajo, la absorción de Mg se incrementa. Para aquellos cultivos que reciben fuertes aplicaciones de fertilizantes potásicos o fuertes abonados orgánicos, es importante mantener en el suelo un nivel adecuado de Mg.

Normalmente las gramíneas y leguminosas rara vez presentan síntomas de deficiencia de Mg, y es muy improbable esperar una reducción de la producción debida a su escasez. Sin embargo, mantener un adecuado contenido de Mg en la hierba es muy importante para la nutrición del ganado.
Para asegurar que los niveles de Mg en suelo no limiten el contenido de este en la planta, si se trata de un suelo ácido que deba encalarse y que presente un índice bajo de Mg (0 o 1) será conveniente utilizar alguna enmienda magnésica, sin embargo en una pradera ya establecida elevar el contenido de Mg en la hierba a base de aplicaciones al suelo es muy difícil. Puede ser más eficiente y más sencillo dar un complemento mineral al ganado.
REFERENCIAS.-
ASA(1980) Soil testing: Correlating and Interpreting Analytical Results.
PIÑEIRO, J. (1972). Producción de praderas de corta duración. Anales INIA.

RELACIÓN DE TÉCNICOS QUE HAN PARTICIPADO EN EL GRUPO DE FERTILIDAD;

Margarita Domingo Uriarte. SIMA: Derio
Jose Mª de Borja Alberdi. OCA Bergara. Guipuzcoa.
Peru Uriarte. OCA Igorre. Vizcaya.